

Slug
User Manual

Version 7.4

Terathon Soware LLC
Lincoln, California

Slug User Manual
Version 7.4

Copyright © 2017–2025, by Terathon Soware LLC

All rights reserved. No part of this publication may be reproduced, stored in an
information retrieval system, transmitted, or utilized in any form, electronic or
mechanical, including photocopying, scanning, digitizing, or recording, without
the prior permission of the copyright owner.

Published by Terathon Soware LLC
terathon.com

 3

Contents

1 Slug Library Overview .. 9

2 Typography .. 11
2.1. Glyphs ... 11
2.2. Metrics ... 12
2.3. Kerning .. 14
2.4. Combining Marks .. 15
2.5. Sequence Replacement .. 16
2.6. Alternate Substitution .. 17
2.7. Transform-Based Scripts .. 23
2.8. Underline and Strikethrough .. 24
2.9. Bidirectional Text Layout .. 24
2.10. Paragraph Attributes ... 25
2.11. Text Alignment ... 25
2.12. Tab Spacing .. 25
2.13. Grid Positioning ... 26

3 Vector Graphics .. 27
3.1. Fills .. 27
3.2. Strokes.. 28

4 Rendering.. 31
4.1. Font and Album Resources .. 31
4.2. Building a Slug .. 36
4.3. Multi-Line Text .. 37

4 Contents

4.4. Custom Glyph Layout .. 39
4.5. Placeholders .. 40
4.6. Multiple Fonts .. 40
4.7. Text Colors ... 44
4.8. Color Glyph Layers .. 44
4.9. Optical Weight .. 44
4.10. Clipping .. 44
4.11. Effects ... 45
4.12. Icons and Pictures ... 45
4.13. Bounding Polygons .. 46
4.14. Optimization ... 47

5 Programming Reference .. 49
AlbumHeader structure .. 50
AssembleSlug() function .. 51
AssembleSlugEx() function .. 53
BreakMultiLineText() function .. 55
BreakMultiLineTextEx() function .. 59
BreakSlug() function .. 61
BreakSlugEx() function .. 65
BuildMultiLineText() function ... 67
BuildMultiLineTextEx() function ... 70
BuildIcon() function ... 72
BuildPicture() function ... 74
BuildSlug() function ... 76
BuildSlugEx() function .. 79
BuildTruncatableSlug() function .. 81
BuildTruncatableSlugEx() function.. 84
BuildTruncatedMultiLineText() function ... 87
BuildTruncatedMultiLineTextEx() function ... 89
CalculateGlyphCount() function .. 91
CalculateGlyphCountEx() function .. 93

Contents 5

Color4U class ... 95
ColorData structure .. 96
ColorRGBA class ... 97
CompiledCharacter structure ... 98
CompiledGlyph structure ... 99
CompiledText and CompiledStorage structures ... 100
CompileString() function ... 102
CompileStringEx() function ... 104
CountFill() function ... 106
CountIcon() function .. 109
CountMultiLineText() function ... 111
CountMultiLineTextEx() function .. 114
CountPicture() function .. 116
CountSlug() function .. 118
CountSlugEx() function ... 120
CountStroke() function .. 122
CreateData structure ... 124
CreateFill() function ... 125
CreateStroke() function .. 127
ExtendedGlyphData structure .. 130
ExtractBandTexture() function .. 131
ExtractCurveTexture() function ... 132
ExtractFontTextures() function .. 133
FillData structure ... 134
FillWorkspace structure ... 135
FontBoundingBoxData structure ... 136
FontClassData structure ... 137
FontDecorationData structure .. 138
FontDesc structure ... 139
FontHeader structure .. 140
FontHeightData structure ... 143
FontMap structure .. 144

6 Contents

FontMathAxisData structure .. 146
FontMetricsData structure .. 147
FontOutlineData structure .. 148
FontPolygonData structure ... 149
FontScriptData structure ... 150
FontSlantData structure .. 151
GeometryBuffer structure ... 152
GetAlbumHeader() function ... 154
GetBandTextureStorageSize() function .. 155
GetCompactCompiledStorageSize() function .. 156
GetCurveTextureStorageSize() function .. 157
GetFontHeader() function .. 158
GetFontKeyData() function .. 159
GetFragmentShaderSourceCode() function ... 161
GetGlyphContourCurveCount() function ... 164
GetGlyphContourData() function ... 165
GetGlyphData() function .. 167
GetGlyphIndex() function .. 168
GetIconData() function ... 169
GetKernValue() function .. 170
GetNontextureDataSize() function ... 171
GetPictureRenderFlags() function .. 172
GetShaderIndices() function ... 173
GetUnicodeCharacterFlags() function .. 175
GetVertexShaderSourceCode() function .. 176
GlyphData structure.. 179
GlyphRange structure ... 181
GraphicData structure ... 182
IconData structure .. 183
ImportIconData() function .. 184
ImportMulticolorIconData() function... 186

Contents 7

LayoutData structure .. 188
LayoutMultiLineText() function .. 198
LayoutMultiLineTextEx() function .. 201
LayoutSlug() function .. 204
LayoutSlugEx() function ... 207
LineData structure .. 210
LocateSlug() function .. 212
LocateSlugEx() function .. 214
LocationData structure ... 216
MakeCompactCompiledText() function .. 218
MeasureSlug() function ... 219
MeasureSlugEx() function ... 221
PictureData structure .. 223
PlaceholderBuffer structure ... 224
PlaceholderData structure .. 225
ResolveGlyph() function .. 226
RunData structure .. 227
SetDefaultFillData() function .. 228
SetDefaultLayoutData() function ... 229
SetDefaultStrokeData() function.. 232
SetValidationCallback() function ... 233
SlugFileHeader structure ... 234
StrokeData structure ... 236
StrokeWorkspace structure .. 238
TestData structure .. 239
TestSlug() function ... 240
TestSlugEx() function .. 243
TextureBuffer structure .. 245
Triangle structure ... 246
UpdateLayoutData() function .. 247
Vertex structure .. 248

6 Format Directives ... 251

8 Contents

7 Font Conversion.. 259

8 Album Creation .. 267

A Release Notes .. 271
Slug 7.4 ... 271
Slug 7.3 ... 271
Slug 7.2 ... 272
Slug 7.1 ... 272
Slug 7.0 ... 273
Slug 6.5 ... 275
Slug 6.4 ... 275
Slug 6.3 ... 276
Slug 6.2 ... 276
Slug 6.1 ... 277
Slug 6.0 ... 277
Slug 5.5 ... 278
Slug 5.1 ... 279
Slug 5.0 ... 279
Slug 4.2 ... 281
Slug 4.1 ... 281
Slug 4.0 ... 282
Slug 3.5 ... 283
Slug 3.0 ... 283
Slug 2.0 ... 284

 9

1
Slug Library Overview

Slug was created as a soware library that performs complex text layout and renders high-quality,
resolution-independent glyphs on the GPU. It is intended to be used by a graphics-intensive application
for all of its text rendering needs, which may include drawing graphical user interfaces, rendering heads-
up displays, showing debugging information, and placing text inside a 3D world or virtual environment.
e original scope of the Slug Library included only text, but the same rendering technology has now
been extended to arbitrary shapes defined independently from fonts, allowing Slug to render many types
of general vector graphics.

e Slug Library gets its name from the history of typography. A “slug” is what typesetters used to call a
full line of text cast as one piece of hot lead by a Linotype machine. Since the primary function of the
library has been to lay out and render individual lines of text, the name Slug was adopted.

Slug consists of a run-time library that performs text layout and rendering inside an application, and
two standalone tools that convert fonts and vector graphics to the format required by Slug. Most of this
manual discusses the functionality of the run-time library. e two conversion tools are discussed in
Chapter 7 and Chapter 8.

e text layout services provided by Slug calculate the positions of the glyphs that are drawn for a given
string of Unicode characters. In addition to basic bounding box and advance width calculations, Slug
can perform a number of typographic manipulations that include kerning, ligature replacement,
combining diacritical mark positioning, glyph composition, alternate substitution, and bidirectional
text layout. Some of these encompass several different capabilities, and in particular, alternate
substitution includes 18 separate features. ese are discussed in detail in Chapter 2.

e rendering component of the Slug run-time library draws glyphs, icons, and arbitrary filled or
stroked paths on the GPU directly from outline data composed of quadratic Bézier curves to produce
crisp graphics at any scale or from any perspective. ere are no precomputed texture images or signed
distance fields. Slug uses a unique mathematical algorithm that can achieve perfect robustness with high
performance. Details about using Slug to render text and vector graphics are discussed in Chapter 4.

e font conversion tool reads the TrueType and PostScript flavors of the OpenType format, which have
the .ttf and .otf file extensions, respectively. (Font collections having the .ttc or .otc extension are
also supported.) is tool generates a new file with the .slug extension containing all of the information
necessary to render the font on the GPU. e .slug file includes the glyph outline data, color layer data

10 Programming Reference

(if available in the original font), optimization data used by the Slug shader, and typesetting data used
during text layout.

e tool used to convert vector graphics to the Slug format reads files in the Scalable Vectors Graphics
(SVG) format having the .svg file extension and the Open Vector Graphics Exchange (OpenVEX)
format having the .ovex file extension. is tool generates an “album” file that contains all of the curve
data necessary to render the graphics on the GPU. Albums have the .slug extension and contain much
of the same types of information that is included in font files, with the main exception being typesetting
data. e graphics in an album file can be organized into a set of icons or a set of “pictures”. Pictures can
contain arbitrary vector graphics consisting of filled and stroked paths.

Vector graphics can also be created at run time without the step of converting an external SVG file to
the Slug format. ese capabilities enable the unrestricted implementation of complex user interfaces
and visualizations with high performance and resolution independence.

 11

2
Typography

Typography is the process through which a string of characters is transformed into a set of glyphs that
are then displayed in some medium. At a broad level, this process involves applying fonts, sizes, and
general spacing parameters that are generally specified directly by the user. At a narrower level,
typography involves subtle adjustments to glyph positions, composition of ligatures or accented
characters, and substitution of stylistic alternates. ese fine details are usually automated to a high
degree and do not directly involve the user except when various features are simply being enabled or
disabled. is chapter introduces typographic terminology and discusses the standard typographic
processes that are implemented in the Slug library.

All of the typographic features of Slug are controlled by the LayoutData structure. is structure
contains information about the font size, rendering colors, text decorations, special effects, geometric
transformations, and all of the layout options. is chapter makes references to many of the fields of the
LayoutData structure, and the precise programming details are provided in Chapter 5.

2.1. Glyphs
A glyph is an individual shape corresponding to some legible component of written language. A glyph
can simply represent a single character, such as a letter, number, or symbol, it can represent a
composition of multiple characters as in the case of ligatures, or it can represent something like an accent
that must be combined with another glyph to have any meaning. Every font contains a set of glyphs that
is numbered independently from the set of characters that the font can display. When a string of text
needs to be rendered, the characters in that text are converted into a sequence of glyphs by a complex
series of steps accounting for a number of typographic transformations. e number of glyphs actually
displayed does not have to match the number of characters in the original text and is oen different.
Once the proper set of glyphs has been determined, their rendering positions are finally calculated.

e appearance of each glyph in a font is defined by a set of one or more closed contours, as shown in
Figure 2.1. Each contour is composed of a continuous sequence of quadratic Bézier curves that
mathematically describe the exact shape of the glyph’s outline. e only information needed to
determine this shape is the set of control points for the Bézier curves, and this allows a glyph to be
rendered with high precision at any scale. In conventional rasterizers, the contour data is used to
generate glyph images one time at each specific size for which a font is displayed, and these images are
then repeatedly copied to the display as needed to render text. e Slug library uses the contour data
directly during the rendering process without an intermediate glyph image generation stage.

12 Typography

Figure 2.1. A glyph is defined by one or more closed contours composed of a set of quadratic
Bézier curves. is glyph has two contours, one corresponding to the outer boundary of the
filled area and another corresponding to the inner boundary of the empty area. e green dots
represent the on-curve control points, and the red dots represent the off-curve control points.
e blue lines are tangent to the glyph’s outline.

2.2. Metrics
e position of each control point belonging to a glyph is expressed relative to a box known as the em
square, and the coordinates of the control points are expressed in em space. As shown in Figure 2.2, the
em square corresponds to the box extending from 0 to 1 in both the x and y directions. In em space, the
x axis points to the right, and the y axis points up. e origin point represents the drawing position on
the baseline of the text. When text is drawn at a font size S, all of the em-space control point coordinates
are uniformly scaled by a factor of S.

Figure 2.2. e em square extends from (0, 0) to (1, 1). Each glyph has a bounding box and
advance width defined in em-space coordinates.

2.2. Metrics 13

e em square contains the bulk of most glyphs, but control points are allowed to occur outside it and
oen do. In particular, some of the control points belonging to a glyph that descends below the baseline
have negative y coordinates. Sometimes, glyphs are wider or taller than the em square and extend
beyond the right and top edges. Although less common, glyphs may also extend past the le edge of the
em square.

e smallest box containing every point on a glyph’s outline is called its bounding box. Ordinarily, the
le edge of the bounding box is near the le edge of the em square and slightly inside. For each glyph, a
font defines an advance width that indicates how far to move the drawing position, aer scaling by the
font size, in order to render the following glyph. e advance width is usually slightly larger than the
width of the bounding box, but this is not a requirement, and it may be smaller in cases when part of a
glyph is intended to extend beyond the drawing position for the next glyph.

e heights of characters in a font are usually smaller than the full height of the em square. ere is no
standard rule, but uppercase roman letters are typically about 70% as tall as the em square. is means
that the actual height of capital letters is roughly 70% of whatever font size has been specified because
the font size corresponds to the physical distance between 0 and 1 in em space. So that it’s possible to
know how large characters will actually appear when rendered, a font defines two values called a cap
height and an ex height that correspond to the ordinary heights of uppercase and lowercase letters, as
illustrated in Figure 2.3. Fonts may also define independent values called the ascent and descent that
correspond to the maximum typical distances above and below the baseline to which letters extend.
Parts of glyphs for lowercase letters that extend beyond the ex height are called ascenders, and parts that
extend below the baseline are called descenders.

Figure 2.3. e cap height corresponds to the general height of uppercase letters, and the ex
height corresponds to the general height of lowercase letters without ascenders. e leading
corresponds to the vertical distance between two consecutive baselines.

14 Typography

When text is rendered as multiple lines, the vertical distance from one baseline to the next baseline is
called the leading (pronounced like the element lead with -ing appended), as shown in Figure 2.3. e
leading value is expressed in units of the em square and must be scaled by the font size to calculate the
physical distance between lines. Leading is not defined by the font but specified by the user, and it is
typically chosen to be in the range of 1.0 to 1.5 em. e default leading used by Slug is 1.2 em, and it can
be changed by modifying the textLeading field of the LayoutData structure.

e horizontal distance between adjacent glyphs is determined by the each glyph’s advance width and
by the kerning values discussed in the next section. e user may increase or decrease this natural
distance by specifying a tracking value that is uniformly applied between all pairs of glyphs. As shown
in Figure 2.4, positive tracking causes glyph spacing to be expanded, and negative tracking causes glyph
spacing to be condensed. As with most other measurements, tracking is specified in em units so that it
is independent of font size. In Slug, the amount of tracking is controlled by the textTracking field of
the LayoutData structure.

Figure 2.4. Tracking adds space to the natural distance between adjacent glyphs.

2.3. Kerning
When certain pairs of glyphs are rendered adjacently, the empty space between them can appear to be
inconsistent with the typical spacing among other glyphs in the text. is happens when one or both
glyphs in a pair have larger than usual regions inside their bounding boxes containing no part of their
outlines. For example, a capital T has a significant amount of empty space in the lower-right corner of
its bounding box, and when a T is followed by most lowercase letters, the greater size of the void can
make the letter spacing within the entire word seem choppy.

Kerning is the process by which the spacing is adjusted between specific pairs of glyphs to give text a
more consistent and more appealing overall distribution. In the example shown in Figure 2.5, the first
line of text is laid out using only the advance widths defined for each glyph. e second line of text
includes kerning, and it is most noticeable where the amount of empty space has been reduced aer the
capital T and capital W. Kerning can also be applied to punctuation, and this is exemplified by the
adjustment to the period and closing quote in the second line. Kerning doesn’t always have to reduce
the amount of spacing and can sometimes be used to increase spacing in cases where glyphs may come
a little too close to each other. e spacing between the opening quote and the capital T in the second
line has been subtly increased to move the serif in the T away from the quote occupying the same vertical
position.

2.4. Combining Marks 15

Figure 2.5. Kerning is enabled in the second line of text, and it causes the excess spacing between
some pairs of glyphs to be closed up.

e data needed for kerning is stored with a font, and it is imported when a font is converted to the Slug
format. Whether kerning is actually applied to a string of text can be controlled by the layoutFlags
field of the LayoutData structure. Kerning is enabled by default.

2.4. Combining Marks
Unicode supports a wide variety of accents and other types of embellishments collectively called marks
that can be combined with a base glyph to construct a complete character. While many common
accented characters such as ä or é are usually available in a precomposed form, it would be impractical
to include all possible combinations of bases and marks in a font, especially considering that multiple
marks can be applied to a single base. Instead, Unicode defines some code points to be combining, which
means that they always get attached to the nearest preceding base character.

A base character such as an uppercase or lowercase letter typically defines a group of anchor points, and
a mark defines a point that must be aligned with one of those anchor points when it is attached to a base
character. Which anchor point each mark gets attached to is something defined by the font, and it is not
selected by the user. In Figure 2.6, one mark is attached to an anchor point at the top of a base character,
and a second mark is attached to another anchor point at the bottom of the same base character. Because
they are attached to different anchor points, these two marks could follow the base character in either
order in the text string. For example, both the strings “a◌̆◌̥” and “a◌̥◌̆” produce the same output ḁ̆. When
multiple marks are attached to the same anchor point, they stack, and each mark is actually attached to
the nearest preceding mark that was attached to that anchor point.

The data needed for mark positioning is stored with a font, and it is imported when a font is converted
to the Slug format. Whether marks are actually attached to base glyphs in a string of text can be
controlled by the layoutFlags field of the LayoutData structure. Mark positioning is enabled by default.

Figure 2.6. Two combining mark characters are attached to different anchor points on a base
character to compose the final appearance of a letter.

16 Typography

2.5. Sequence Replacement
When characters are translated into glyphs, specific sequences of glyphs are identified as special groups
that should be replaced by a substitute glyph. In Slug, this process is referred to as sequence replacement,
and it includes two general substitution categories called ligatures and glyph composition.

A ligature is a special glyph that is drawn as a replacement for a specific sequence of two or more
ordinary glyphs to improve the aesthetic appearance and readability of the text. Ligatures are oen
provided for pairs of characters that frequently appear next to each other and tend to touch or overlap
slightly. A font may define ligatures to replace any sequences of characters, but it is most commonly
done for the lowercase letter f followed by another letter f, a letter i, or a letter l. A few examples are
shown in Figure 2.7.

OpenType fonts can classify ligatures as required, standard, discretionary, or historical, and these classes
can be separately enabled or disabled in Slug by setting bits in the sequenceMask field of the LayoutData
structure. Note that classifications for the same ligatures sometimes differ among fonts. Ligatures that
are classified as standard in one font may be classified as discretionary in another font.

Figure 2.7. In the first line of text, each character is drawn as a separate glyph. In the second
line, special ligature glyphs are drawn in place of the character pairs , fi, fl, and .

Glyph composition is another type of sequence replacement that combines multiple input glyphs into a
single output glyph. is feature is typically used by a font to perform replacements in various non-
English writing systems that must occur for text to be rendered correctly and therefore not to be
considered optional. Glyph composition is enabled by default in Slug, and it can be controlled by the
kSequenceGlyphComposition bit in the sequenceMask field of the LayoutData structure.

Aside from language-specific applications, glyph composition is also used to build specialized emoji
glyphs from generic components. For example, an emoji having a specific skin tone is generated by
following a generic version of the emoji with one of five skin tone modifiers beginning with Unicode
character U+1F3FB. e pair of glyphs composes the boy emoji with the type-4 skin tone modifier
to produce the single glyph . More elaborate replacements are oen performed by sequences that
include the zero-width joiner (ZWJ) character U+200D. For example, the sequence ZWJ composes
the woman emoji, ZWJ character, and microscope emoji to produce the woman scientist emoji .

Some fonts contain special glyphs that can replace a sequence of glyphs representing a fraction. For
example, the three glyphs making up the sequence “7/8” could be replaced by a single glyph that looks

2.6. Alternate Substitution 17

like ⅞. ese are called alternative fractions, and they are enabled by setting the kSequenceAlternative-
Fractions bit in the sequenceMask field of the LayoutData structure.

The data needed for sequence replacement is stored with a font, and it is imported when a font is
converted to the Slug format. All sequence replacement for a string of text can be controlled by the
layoutFlags field of the LayoutData structure independently of the sequenceMask field. By default,
general sequence replacement is enabled, but discretionary ligatures, historical ligatures, and alternative
fractions are disabled by the sequenceMask field.

2.6. Alternate Substitution
OpenType fonts oen contain a potentially large set of special glyphs that are not directly accessible
through any Unicode character values but are instead designated as alternates for other glyphs. Alternate
glyphs are grouped based on the type of transformation they apply to the default appearances of the
glyphs they replace. For example, one group of alternates turns lowercase letters into small capitals, and
another group of alternates turns numbers into subscripts. Slug supports a variety of alternate types, as
shown in Table 2.1, and each one is enabled by setting a bit in the alternateMask field of the LayoutData
structure.

e data needed for alternate substitution is stored with a font, and it is imported when a font is
converted to the Slug format. All alternate substitution for a string of text can be controlled by the
layoutFlags field of the LayoutData structure independently of the alternateMask field. By default,
general alternate substitution is enabled, but no bits in the alternateMask field are set, so no substitution
takes place without enabling one or more alternates in the mask.

Stylistic Variants
It is common for fonts to include stylistic variants, as shown in Figure 2.8. ese variants can comprise
as little as a set of alternate forms for a handful of glyphs or as much as several complete sets of every
letter of the alphabet with increasing levels of flare. OpenType defines a group of 20 substitution features
for stylistic variants, and they are accessed in Slug by specifying the kAlternateStylistic option and
selecting a style index in the LayoutData structure.

I am jumping quickly.
I am jumping quickly.

A B C D E F G H I J K L
A B C D E F G H I J K L

Figure 2.8. ese are examples of stylistic variants. On the le, the roman letters in the Arial
font are shown in their default forms on the first line and in stylistic set #3 on the second line,
which makes some subtle changes to the appearance of specific glyphs. A uniform and more
stylized difference is illustrated on the right by the uppercase letters in the Gabriola font, which
are shown in their default forms on the first line and in stylistic set #4 on the second line.

18 Typography

Historical Variants
A historical variant is an alternate glyph whose form represents the past appearance of some character
that is no longer in common use. e most common historical variant pertains to the lowercase letter s.
Fonts don’t typically include many historical variants, but when they do, these variants can be enabled
in Slug by specifying the kAlternateHistorical option.

Table 2.1. ese are the alternate glyph types supported by Slug. Each type of alternate is activated by setting the
bit in the second column in the alternateMask field of the LayoutData structure. e four-character code shown
in the third column is the OpenType feature to which each type of alternate corresponds.

Alternate type Slug enumerant OpenType feature

Stylistic variants kAlternateStylistic ss01 – ss20

Historical variants kAlternateHistorical hist

Lowercase small caps kAlternateLowerSmallCaps smcp

Uppercase small caps kAlternateUpperSmallCaps c2sc

Titling caps kAlternateTitlingCaps titl

Unicase kAlternateUnicase unic

Case-sensitive forms kAlternateCaseForms case

Subscripts kAlternateSubscript subs

Superscripts kAlternateSuperscript sups

Scientific inferiors kAlternateInferiors sinf

Ordinals kAlternateOrdinals ordn

Lining figures kAlternateLiningFigures lnum

Old-style figures kAlternateOldstyleFigures onum

Tabular figures kAlternateTabularFigures tnum

Proportional figures kAlternateProportionalFigures pnum

Slashed zero kAlternateSlashedZero zero

Fractions kAlternateFractions frac, numr, dnom

Hyphen minus kAlternateHyphenMinus –

2.6. Alternate Substitution 19

Small Caps
e term small caps refers to the technique of replacing lowercase letters with versions of the
corresponding uppercase letters that are rendered at a smaller size. In the past, small caps were typically
drawn by simply scaling the glyphs for uppercase letters down to a smaller size. Modern fonts include
special glyphs for small caps, and as demonstrated in Figure 2.9, these come with several advantages:

• Because the special glyphs are not scaled-down versions of ordinary capitals, they don’t suffer from
thinning strokes that can give the appearance of a lighter weight. e small caps instead look like they
fit in with the rest of the font.

• e font can include specialized kerning data for small caps glyphs. For example, a small caps glyph
following an ordinary capital T can oen be kerned.

• A font may provide alternate glyphs for symbols and punctuation that match the size of its small caps
glyphs and substitute these variants when small caps is enabled.

OpenType defines two features for substituting small caps, one for replacing lowercase letters, and
another for replacing uppercase letters. (e latter is less commonly available.) ese can be enabled in
Slug by specifying the kAlternateLowerSmallCaps and kAlternateUpperSmallCaps options.

If a font does not contain small caps, or if a font does not have small caps variants for certain symbols,
the smaller size can still be achieved, without the above advantages, by using embedded format
directives to change the scale of the glyphs. See the scale directive in Chapter 6.

Figure 2.9. In the first line of text, small caps are rendered with specialized alternate glyphs
having stroke weight and spacing designed to match the rest of the font. In the second line, small
caps are simulated by scaling down ordinary capital letters, and this leads to a lighter appearance
and tighter spacing.

Titling Caps
Some fonts include an extra set of capitals that are meant to be used in titles or headlines consisting only
of uppercase letters. ese are called titling caps, and they usually have slightly different weights and
spacing to improve readability. If titling caps are available in a font, they can be enabled in Slug by
specifying the kAlternateTitlingCaps option.

Unicase
Unicase is a somewhat obscure OpenType feature that causes both lowercase and uppercase letters to be
transformed into a single set of glyphs consisting of a mixture of capital and small forms sharing the
same overall height. An example is shown in Figure 2.10. When available, Unicase can be enabled in
Slug by specifying the kAlternateUnicase option.

20 Typography

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
aBCDeFGHIJKLmnOPQRSTuVWXYZ

Figure 2.10. e unicase alternates in the Arial font apply to both uppercase and lowercase
letters. Here, both cases are transformed into a single set of mixed forms having the same overall
height.

Case-sensitive Forms
A font may include alternate versions of punctuation and other symbols that fit better with text written
in uppercase letters, and these are called case-sensitive forms. Typically, the glyphs for characters such as
parentheses are shied upward a little and possibly enlarged. e hyphen character is oen repositioned
higher to account for the greater size of capital letters. If a font contains case-sensitive forms, they can
be enabled in Slug by specifying the kAlternateCaseForms option.

Subscripts and Superscripts
As with small caps, there are two ways in which subscripts and superscripts can be typeset. Most fonts
include alternate glyphs for subscripts and superscripts that maintain a consistent stroke weight and
enable specialized kerning. e use of these glyphs is called alternate-based scripts, and this method
should be used when possible to achieve the highest quality. Unfortunately, the set of characters covered
by this feature varies widely from one font to another and is usually sparse. One font may include
subscript glyphs for all letters, numbers, and symbols, and another font may include subscript glyphs
only for the numbers 0–9. When alternate glyphs are not available, a different method called transform-
based scripts, described in Section 2.7 below, must be used instead to scale and offset the glyphs.

Alternate-based subscripts and superscripts are enabled in Slug by specifying the kAlternateSubscript
and kAlternateSuperscript options. In the case that subscripts or superscripts are enabled, but a font
does not include the alternate glyph for a particular character, that character remains in its original form.

Scientific Inferiors and Ordinals
Separately from subscripts and superscripts, a font may define similar sets of glyphs called scientific
inferiors and ordinals.

Scientific inferiors are simply subscripts that are meant to be used in text containing things like
mathematical expressions or chemical formulas such as H₂O. It’s possible for these to have a slightly
different appearance than ordinary subscripts, but most fonts just use the same glyphs for both
subscripts and scientific inferiors, which means the character coverage is usually the same. Scientific
inferiors are enabled in Slug by specifying the kAlternateInferiors option.

2.6. Alternate Substitution 21

Ordinals pertain to the raised letters in abbreviations such as 1, and they may have a different size or
position compared to superscripts. e character coverage for ordinals varies considerably from one
font to another. In some cases, superscripts and ordinals are supplied for all lowercase letters, and they
use the same set of glyphs. In other cases, no superscripts are supplied for letters, and ordinals are
supplied for only the letters d, h, n, r, s, and t because those cover all possibilities in the English language.
Ordinals are enabled in Slug by specifying the kAlternateOrdinals option.

Figure Style and Spacing
In typography, the numbers 0 through 9 are called figures, and they generally come in two styles called
lining figures and old-style figures. e difference between the two styles is illustrated in Figure 2.11.
Lining figures fill the entire space between the baseline and the cap height for the font. In contrast, the
bulk of each old-style figure fills only the space between the baseline and the ex height, but some figures
have pieces that extend higher or lower. e default figure style used by a font may be either lining or
old-style, and it’s usually the case that the other style is available through the alternate substitution
mechanism.

Figure 2.11. Lining figures are rendered in the first line, and they extend to nearly the cap height
represented by the blue dashes. Old-style figures are rendered in the second line where the blue
dashes instead represent the ex height.

In Slug, default old-style figures can be replaced by alternate lining figures by specifying the
kAlternateLiningFigures option, and default lining figures can be replaced by alternate old-style
figures with the kAlternateOldstyleFigures option.

Most fonts provide two spacing options for figures called tabular and proportional, and these options
may be available for both lining figures and old-style figures or only for one of those styles. Tabular
figures all have the same advance width and are named for their usefulness in typesetting numerical
data that may appear in some kind of table, where it’s necessary for each column of digits to line up.

22 Typography

Proportional figures have varying widths that depend on the actual shape of each glyph. As with the
style option, the default spacing option may be either tabular or proportional, and the alternate
substitution mechanism is used to switch from one to the other.

In Slug, default proportional figures can be replaced by alternate tabular figures by specifying the
kAlternateTabularFigures option, and default tabular figures can be replaced by alternate
proportional figures with the kAlternateProportionalFigures option. Note that when using tabular
figures, some fonts still kern a little between two consecutive 1 characters, so it’s a good idea to disable
kerning as well to ensure consistent spacing.

Slashed Zero
Many fonts contain an alternate glyph for the number zero that has a slash through it. When the
kAlternateSlashedZero option is enabled, this alternate glyph is substituted for any ordinary zero
characters having Unicode value U+0030.

Fractions
If a forward slash character having Unicode value U+002F or a fraction slash character having Unicode
value U+2044 has numerical digits immediately preceding it and immediately following it, Slug can
convert the entire sequence into a common fraction with raised numerator digits and lowered
denominator digits, as shown in Figure 2.12. When the kAlternateFractions option is enabled, the
glyph for the slash character is replaced by a fraction slash, the glyphs for the preceding digits are
replaced by numerator alternates, and the glyphs for the following digits are replaced by denominator
alternates. ese alternate digits are smaller in size compared to ordinary text and have positions that
are different from superscripts and subscripts, typically appearing no higher than the capital height and
no lower than the baseline.

Figure 2.12. Fraction substitution replaces a sequence of digits followed by a slash and another
sequence of digits in the top line by special numerator alternates, a fraction slash, and special
denominator alternates in the bottom line.

2.7. Transform-Based Scripts 23

Hyphen Minus
Most fonts contain a glyph for the minus character having Unicode value U+2212, but minus signs are
almost universally represented by the ordinary hyphen character having Unicode value U+002D in
strings generated by computer programs. Hyphen glyphs are usually shorter than and drawn below the
horizontal stroke of a plus sign, and this produces an inconsistent appearance in numerical text. When
the kAlternateHyphenMinus option is enabled, the glyph for the hyphen character is drawn as the glyph
for the minus sign if it’s available in the font. is provides a way to render proper minus signs without
having to change any characters in a string, which would require replacing a one-byte hyphen character
with a two-byte minus character encoded as UTF-8.

e hyphen minus alternate does not correspond to any OpenType feature. e functionality is specific
to Slug, and it exists to provide a convenient way to nicely typeset negative numbers and subtraction
expressions.

2.7. Transform-Based Scripts
Every OpenType font contains information describing how glyphs should be scaled and offset in order
to render subscripts and superscripts. Because it is rare for a font to include alternate subscript and
superscript glyphs for every letter, number, and symbol, the geometric transforms must instead be used
whenever any script characters are not covered by those alternates. is method of producing subscripts
and superscripts is called transform-based scripts, and it is accessible in Slug by using the embedded
format directive script().

e transform for a subscript or superscript consists of a scale and offset that both have x and y
components. e scale resizes the glyphs, and it is typically nonuniform so that script glyphs are slightly
expanded in the horizontal direction compared to their original dimensions. e offset changes the
position of the glyphs, and it is primarily used to raise or lower the baseline. e x component of the
offset is usually zero, but it can be nonzero in italic or oblique fonts to account for the general slant of
the text.

Slug supports multiple levels of subscripts and superscripts to a maximum depth of three. At the n-th
level, the script transform is simply applied n times. e script() format directive takes a single integer
argument in the range [−3, 3] that specifies either subscript or superscript and the level. When this
directive is applied, it sets internal scale and offset values that function independently of the textScale
and textOffset fields of the LayoutData structure. e directive script(n) enables subscript rendering
for negative values of n and superscript rendering for positive values of n, and it sets the script level to
the absolute value of n. e directive script(0) discontinues script rendering and resets the internal
scale and offset values to the identity transform.

e default subscript and superscript scale and offset values provided by a font may not be exactly what
the user wants, and it’s not uncommon for the default transforms to be a poor match for the alternate
subscript and superscript glyphs. e set of eight values (two scales and two offsets for both subscript
and superscript) can be individually overridden when a .slug file is generated by specifying new values
on the slugfont command line, as described in Chapter 7.

24 Typography

2.8. Underline and Strikethrough
Slug is able to render underline and strikethrough for any subset of the glyphs in a line of text. ese are
called text decorations, and information about their preferred position and size is included in every
OpenType font. By default, a tiny amount of extra geometric data is stored inside each .slug file that is
used to render the horizontal strokes for underline and strikethrough decorations with the same shader
that is used to render glyphs. is allows those decorations to be rendered in the same draw call as the
text, and it gives those decorations an appearance that’s consistent with the glyphs at all scales.

Underline and strikethrough can be enabled for a line of text by setting entries of the decorationFlag
field of the LayoutData structure, and they can be controlled at a character granularity by using the
embedded format directives under() and strike().

e default underline and strikethrough positions and sizes provided by a font may not be exactly what
the user wants. e set of four values (a position and size for both underline and strikethrough) can be
individually overridden when a .slug file is generated by specifying new values on the slugfont
command line, as described in Chapter 7.

2.9. Bidirectional Text Layout
Slug is able to render text in the right-to-le writing direction for languages such as Arabic, and it can
perform bidirectional layout for text containing characters using both le-to-right and right-to-le
directionalities. All text has a primary writing direction that determines how the drawing position is
normally advanced as well as how bidirectional layout behaves. By default, the primary writing direction
is le-to-right, but it can be changed to right-to-le by setting the kLayoutRightToLeft bit in the
layoutFlags field of the LayoutData structure.

Bidirectional text layout is enabled by setting the kLayoutBidirectional bit in the layoutFlags field
of the LayoutData structure. When bidirectional text layout is enabled, Slug considers the Unicode
directionality for each character to determine whether various runs of text should be laid out le-to-
right or right-to-le. Characters such as spaces and punctuation are directionally neutral, and when
they occur at the boundary between runs having different directionalities, those characters are
associated with the runs having the primary writing direction (as determined by whether the
kLayoutRightToLeft bit is set). is can cause punctuation to appear on wrong side of a word having
the opposite writing direction, but this problem can be eliminated by following such punctuation with
a le-to-right marker (LRM) or right-to-le marker (RLM) control character, as appropriate, defined by
Unicode with values U+200E and U+200F, respectively.

Some Unicode characters, such as parentheses, brackets, and a variety of mathematical symbols, have
the special property that they are supposed to be mirrored when they appear in right-to-le text. When
bidirectional text layout is enabled, Slug automatically replaces these characters with their mirrored
counterparts when they occur inside a run of right-to-le text.

2.10. Paragraph Attributes 25

2.10. Paragraph Attributes
When text is laid out as multiple lines, it can be partitioned into paragraphs by using hard break
characters. Various formatting options can be applied to each paragraph by specifying values in the
LayoutData structure and enabling paragraph attributes by setting the kLayoutParagraphAttributes
bit in the layoutFlags field. ese formatting options are summarized as follows.

• A paragraph can have le and right margins. ese are useful for things like block quotes and lists
that are offset from the surrounding text.

• e first line of each paragraph can be indented or outdented by a specific distance.

• Extra vertical space can be applied between paragraphs. is adds to the ordinary leading applied
between consecutive lines.

By default, paragraph attributes are not enabled.

2.11. Text Alignment
Multi-line text can have le, right, or center alignment as specified by the textAlignment field of the
LayoutData structure. e alignment determines the horizontal position of each line of text with respect
to the maximum span passed to functions like BuildMultiLineText(). When text is aligned le, all
lines start at the le margin and end wherever the next word would not fit on the line. is creates a
ragged right margin in which the lines of text generally have different physical lengths. When text is
aligned right, it’s the opposite case in which the right margin is constant and the le margin is ragged.
When text is aligned center, all lines are centered in between the le and right margins, and both sides
are ragged.

Full justification is specified independently of the alignment by setting the kLayoutFullJustification
flag in the layoutFlags field of the LayoutData structure. When full justification is enabled, lines of text
are laid out so that they always occupy the full width of the maximum span. In this case, both the le
and right margins are constant, and neither side is ragged. Full justification is accomplished by
expanding the width of the space characters so that each line is exactly the desired width. e last line
in each paragraph is not fully justified, but instead the alignment specified by the textAlignment field
is applied.

e set of Unicode characters that should be treated as spaces for full justification is specified by the
spaceCount and spaceArray fields of the LayoutData structure. Extra advance width is added to each
occurrence of one of these space characters on each line as necessary to expand the line’s width to the
maximum span. A typical set of space characters consists of the ordinary space U+0020 and the non-
breaking space U+00A0.

2.12. Tab Spacing
Tab spacing is enabled by setting the kLayoutTabSpacing bit in the layoutFlags field of the LayoutData
structure, and the distance between consecutive tab stops is specified in the tabSize field. When tab

26 Typography

spacing is enabled, each tab character (with Unicode value U+0009) appearing in the input string causes
the drawing position to be moved to the next tab stop.

e tabRound field of the LayoutData structure can be used to avoid tiny advances when the drawing
position is very close to the next tab stop. is value is added to the drawing position before determining
where the next tab stop is. A recommended value for the tabRound field is 0.125, which is half the typical
width of a space character.

Note that the distance between tab stops is measured in absolute units just like the font size, but the tab
rounding value is specified in em units.

2.13. Grid Positioning
Slug has a special layout mode called grid positioning that places glyphs at regularly spaced intervals
determined solely by the current tracking value. Grid positioning is enabled by setting the kLayoutGrid-
Positioning bit in the layoutFlags field of the LayoutData structure. When the grid positioning mode
is active, the advance width for each glyph is ignored, and kerning is always disabled. Furthermore, each
glyph is horizontally centered upon the current drawing position. e distance from the center of one
glyph to the center of the next is given by the tracking value multiplied by the font size, the stretch factor,
and the x component of the text scale specified in the LayoutData structure.

 27

3
Vector Graphics

Vector graphics is the name given to 2D graphics that are defined by mathematical curves as opposed to
an array of pixels. Vector graphics can be scaled to any size without loss of fidelity, and they are converted
to a raster image matching the resolution of the output device when they are rendered. e glyphs
defined by a font are a specific type of vector graphics, but the rendering methods used by Slug can be
generalized to support a much wider array of applications.

Slug separates the components of vector graphics into two types, fills and strokes. For a shape whose
outline is defined by a set of Bézier curves, a fill corresponds to the interior area enclosed by the outline,
and a stroke corresponds to the outline itself. Fills and strokes can be arbitrarily combined to form
detailed graphics. Slug is able to import these graphics from files in the Scalable Vector Graphics (SVG)
and Open Vector Graphics Exchange (OpenVEX) formats (see Chapter 8). Slug also provides the ability
to generate fills and strokes at run time using the CreateFill() and CreateStroke() functions.

3.1. Fills
A fill is simply a region of space bounded by a set of Bézier curves that is filled with either a solid color
or a gradient. Fills can be defined by any arbitrary set of closed contours composed of a continuous
sequence of Bézier curves. Fills follow the same winding rules as glyphs, so contours wound the opposite
direction inside a larger contour correspond to holes in the filled region. When a fill is created at run
time, its properties are specified using the FillData structure.

Gradients
A fill can be drawn with a solid color or with a gradient. Slug supports two types of gradients known as
linear gradients and radial gradients, and these both smoothly interpolate between two colors. Examples
of both types of gradients are shown in Figure 3.13. A linear gradient varies from the first color to the
second color in one specific direction as distance from a given line increases. A radial gradient varies
from the first color to the second color in all directions as distance from a given point increases.

28 Vector Graphics

Figure 3.13. (Le) A linear gradient interpolates between two colors (yellow to red in this case)
using distance from a line. (Right) A radial gradient interpolates between two colors using
distance from a point.

e position, direction, and width of a linear gradient are determined by three numbers defining a scaled
line in 2D space. is line coincides with the location where the first color of the gradient is rendered
inside a fill, and its scale is the reciprocal of the gradient’s width. For a gradient of width w starting at a
line containing the point and having the unit-length direction , the three components of
the line are given by

 .

ese values are the components of a 2D homogeneous bivector, and they should be assigned to the
gradientLine field of the FillData structure when using a linear gradient.

e position and radius of a radial gradient are determined by three numbers defining a circle in 2D
space. e center of the circle coincides with the location where the first color of the gradient is
rendered inside a fill, and the radius r specifies the distance from the center at which the second color
of the gradient is rendered. e values should be assigned to the gradientCircle field of the
FillData structure when using a radial gradient.

3.2. Strokes
A stroke is a region of space within a small distance of every point on a set of Bézier curves. Whereas
fills correspond to the interior region of a path, strokes correspond to the boundary of that region.
Unlike fills, the set of Bézier curves to which a stroke is applied does not have to form closed contours.
When a stroke is created at run time, its properties are specified using the StrokeData structure.

Each stroke has a constant width that is specified in the strokeWidth field of the StrokeData structure.
A stroke is centered on the Bézier curves defining its path, so half of a stroke lies on one side of the
curves, and half lies on the other side.

Slug supports various aspects of stroke rendering that are standard in vector graphics, including cap
styles, join styles, and dashing. ese are described below.

3.2. Strokes 29

Cap Styles
Since a stroke can be open, it makes sense to provide different ways of capping its beginning and ending
points. Slug supports the four styles shown in Figure 3.14, which are named flat, square, round, and
triangle. e flat style really means that there is no cap and the stroke ends precisely at the final control
point in the set of Bézier curves. e other three cap styles each cause additional rendering to occur to
exactly half the stroke width past the final control point in the shape of a semisquare, semicircle, or
isosceles triangle. e cap style is specified in the strokeCapType field of the StrokeData structure.

Figure 3.14. Open strokes can have flat ends, or they can have caps that are square, round, or
triangular.

Join Styles
When two consecutive Bézier curves belonging to a path do not have the same tangent direction at their
endpoints, a corner is formed. e two Bézier curves can be joined at this corner in one of the three
different styles shown in Figure 3.15. A full miter join is rendered whenever the length of the edge where
the two curves meet falls below a specified value called the miter limit. e miter limit is the ratio of the
edge length to the width of the stroke, and it is specified in the miterLimit field of the StrokeData
structure. If this limit is exceeded, then the join style is either bevel or round as determined by the
strokeJoinType field of the StrokeData structure. e miter limit can be set to zero, and this forces all
joins with discontinuous tangent directions to be rendered as either bevel joins or round joins.

Figure 3.15. When two curves meet at a corner, the stroke is rendered with a miter join
whenever the length of the edge where the curves meet falls below a specified multiple of the
stroke width, called the miter limit. If the miter limit is exceeded, then either a bevel join or
round join is rendered, as chosen by the application.

30 Vector Graphics

Dashing
Slug can render strokes with arbitrary dashing. e lengths of the dashes and the sizes of the gaps in
between dashes are specified by an array containing an even number of values. Each pair of values
corresponds to a dash length and the size of the gap that follows it. As a stroke progresses from its
starting point, dashes and gaps are applied in order until they have all been used, and then the cycle
repeats until the end of the stroke is reached. is is illustrated in Figure 3.16 for four values
corresponding to two dash lengths and two gap lengths.

e number of dashes and the array of dash and gap lengths are specified in the dashCount and
dashArray fields of the StrokeData structure. It is also possible to offset the application of dashing at
the beginning of a stroke as if there had already been some curve length preceding it, and this offset is
specified in the dashOffset field.

When the cap style for a stroke is not flat, caps are applied to both ends of each individual dash.
Whenever two curves meet inside a dash, as opposed to inside a gap, the miter limit and join style
determine how any corners are rendered.

Figure 3.16. Dashes and gaps are applied in order along a stroke until they have all been used,
and then the cycle repeats. In this case, there are two different dash and gap lengths.

 31

4
Rendering

e text-handling functions of the Slug run-time library take a Unicode string (encoded as UTF-8), lay
out the corresponding glyphs, and generate a vertex buffer containing the data needed to draw them.
Slug’s vector graphics functions can be used to draw premade icons and pictures or to generate arbitrary
fills and strokes at run time. is chapter describes how the Slug library is used by an application to
perform these functions with the various options available in the Slug shader.

4.1. Font and Album Resources
Rendering text or pictures with Slug requires two texture maps containing geometric data, a vertex and
fragment shader pair corresponding to the rendering options, and buffers containing the vertex and
triangle data for the specific items to be rendered. ese resources are either retrieved from a font or
album file (in the Slug format) or generated by the Slug run-time library, and they are then passed to
whatever rendering API is used by the application.

Textures
e two texture maps needed by Slug are called the curve texture and the band texture, and they are
stored in compressed form inside the .slug file for each font or album. e curve texture holds all of
the Bézier curve data in either a 4×16-bit floating-point format or a 4×32-bit floating-point format, and
the band texture holds spatial data structures necessary for high-performance rendering in a 2×16-bit
unsigned integer format. ese two textures are decompressed into application-allocated storage buffers
by calling the ExtractCurveTexture() and the ExtractBandTexture() functions, as demonstrated in
Listing 4.1. e required storage space for the two textures can be calculated by calling the GetCurve-
TextureStorageSize() and GetBandTextureStorageSize() functions. ese functions apply to both
font and album resources, and they each accept a pointer to the SlugFileHeader structure at the
beginning of every .slug file’s contents.

Listing 4.1. is code allocates storage for the curve and band textures belonging to a Slug resource and
decompresses the texture data from a .slug file.

void MakeSlugTextures(const Slug::SlugFileHeader *fileHeader)
{
 uint32 curveStorageSize = Slug::GetCurveTextureStorageSize(fileHeader);

32 Rendering

 uint32 bandStorageSize = Slug::GetBandTextureStorageSize(fileHeader);
 char *curveTexture = new char[curveStorageSize];
 char *bandTexture = new char[bandStorageSize];

 Slug::ExtractCurveTexture(fileHeader, curveTexture);
 Slug::ExtractBandTexture(fileHeader, bandTexture);

 /* Pass texture maps to rendering API here. */

 delete[] bandTexture;
 delete[] curveTexture;
}

Shaders
Slug renders glyphs and icons using a set of vertex shaders and fragment shaders. e source code for
these shaders contains preprocessor directives that automatically handle conditional compilation for the
HLSL, GLSL, Metal, and PSSL shading languages. ere are also preprocessor directives that cause
different variants of the fragment shader to be compiled, and these correspond to different font
capabilities and rendering options. e shader variants are associated with constant index values that
are determined by the GetShaderIndices() function, and these index values are then used to retrieve
the corresponding components of the full shader code from the run-time library.

e GetVertexShaderSourceCode() and GetFragmentShaderSourceCode() functions are called to
retrieve the source code for the vertex shader and fragment shader for specific shader index values. e
source code is returned as an array of strings that form a complete shader when they are concatenated.
is method allows many different variants to be assembled from smaller pieces, and it enables the
incorporation of the shaders into an external shading system, as discussed below.

When using the Direct3D rendering API, the shader strings must be concatenated before being passed
to the D3DCompile() function. e Slug library includes helper functions named GetShaderString-
Length() and MakeShaderString() as a convenient way to perform this concatenation, but their use is
not required. Compiling standalone vertex and fragment shaders under the Direct3D API is
demonstrated in Listing 4.2. Note that the entry point passed to the D3DCompile() function must be
"main", and the shader target must correspond to shader model 4.0 or higher.

When using the OpenGL rendering API, the shaders strings do not need to be concatenated, but can be
passed directly to the shader compiler as an array. GLSL compilers require that the first line of any shader
contain a version directive, so it is necessary to begin the array of strings with either the statement

#version 330

in desktop OpenGL or the statement

#version 300 es

4.1. Font and Album Resources 33

in OpenGL ES. (ese version numbers represent the minimum requirement of the Slug library, and
higher versions can also be specified.) Compiling standalone vertex and fragment shaders under the
OpenGL API is demonstrated in Listing 4.3.

e vertex shader requires that a model-view-projection (MVP) matrix be supplied as four rows of four
32-bit floating-point values. (ese are the 16 entries of a matrix that transforms column vectors.) It also
requires that the dimensions of the viewport be supplied as two additional 32-bit floating-point values.
In Direct3D, this information must be stored as 18 consecutive numbers in constant buffer 0, where the
first 16 numbers are the MVP matrix in row-major order, and the last two numbers are the width and
height of the viewport. In OpenGL, this information is passed to the vertex shader as two uniform inputs
having the names "slug_matrix" and "slug_viewport". eir locations must be retrieved with the
glGetUniformLocation() function.

e curve texture and band texture must be bound to texture slots 0 and 1, respectively, for use by the
fragment shader. In Direct3D, this is done by calling the PSSetShaderResources() function to bind two
texture views beginning at slot 0. In OpenGL, this is done by calling the glBindTexture() function
twice to bind the texture objects to units 0 and 1 with the target GL_TEXTURE_2D. e fragment shader
does not use samplers.

Listing 4.2. is code compiles the HLSL vertex and fragment shaders needed to render with specific
options given by the renderFlags parameter. e vertexBlob and fragmentBlob parameters point to
ID3DBlob objects that receive the compiled shader code. e shader strings returned by the Slug library
are concatenated before being passed to the D3DCompile() function.

void CompileSlugShaders(uint32 renderFlags,
 ID3DBlob *vertexBlob,
 ID3DBlob *fragmentBlob)
{
 uint32 vertexIndex, fragmentIndex;
 const char *vertexCode[Slug::kMaxVertexStringCount];
 const char *fragmentCode[Slug::kMaxFragmentStringCount];

 // Retrieve shader indices for rendering options.
 Slug::GetShaderIndices(renderFlags, &vertexIndex, &fragmentIndex);

 // Store the shader source code components in the arrays.
 int32 vStrCnt = Slug::GetVertexShaderSourceCode(vertexIndex, vertexCode);
 int32 fStrCnt = Slug::GetFragmentShaderSourceCode(fragmentIndex,
 fragmentCode);

 // Concatenate the vertex shader strings.
 int32 vStrLen = Slug::GetShaderStringLength(vStrCnt, vertexCode);
 char *vertexString = new char[vStrLen];
 Slug::MakeShaderString(vStrCnt, vertexCode, vertexString);

34 Rendering

 // Compile the vertex shader with the full shader string.
 D3DCompile(vertexString, vStrLen, nullptr, nullptr, nullptr,
 "main", "vs_4_0", D3DCOMPILE_OPTIMIZATION_LEVEL3, 0,
 &vertexBlob, nullptr);

 // Concatenate the fragment shader strings.
 int32 fStrLen = Slug::GetShaderStringLength(fStrCnt, fragmentCode);
 char *fragmentString = new char[fStrLen];
 Slug::MakeShaderString(fStrCnt, fragmentCode, fragmentString);

 // Compile the fragment shader with the full shader string.
 D3DCompile(fragmentString, fStrLen, nullptr, nullptr, nullptr,
 "main", "ps_4_0", D3DCOMPILE_OPTIMIZATION_LEVEL3, 0,
 &fragmentBlob, nullptr);

 delete[] fragmentString;
 delete[] vertexString;
}

Listing 4.3. is code compiles the GLSL vertex and fragment shaders needed to render with specific
options given by the renderFlags parameter. e vertexShaderName and fragmentShaderName
parameters are assumed to be valid OpenGL shader object names that were previously established. e
calls to the glShaderSource() function both pass an array of strings containing the components of the
shaders. e first string is the version directive required by GLSL, and the remaining strings are returned
by the Slug library.

void CompileSlugShaders(uint32 renderFlags,
 GLuint vertexShaderName,
 GLuint fragmentShaderName)
{
 uint32 vertexIndex, fragmentIndex;
 const char *vertexCode[Slug::kMaxVertexStringCount + 1];
 const char *fragmentCode[Slug::kMaxFragmentStringCount + 1];

 // Retrieve shader indices for rendering options.
 Slug::GetShaderIndices(renderFlags, &vertexIndex, &fragmentIndex);

 // Set the first string to the required version directive.
 vertexCode[0] = fragmentCode[0] = "#version 330\n";

 // Store the source code components after the version string.
 int32 vStrCnt = Slug::GetVertexShaderSourceCode(vertexIndex,
 &vertexCode[1]);
 int32 fStrCnt = Slug::GetFragmentShaderSourceCode(fragmentIndex,
 &fragmentCode[1]);

4.1. Font and Album Resources 35

 // Compile the vertex shader with version directive and source.
 glShaderSource(vertexShaderName, vStrCnt + 1, vertexCode, nullptr);
 glCompileShader(vertexShaderName);

 // Compile the fragment shader with version directive and source.
 glShaderSource(fragmentShaderName, fStrCnt + 1, fragmentCode, nullptr);
 glCompileShader(fragmentShaderName);
}

External Shading Systems
Slug supports the incorporation of Slug shaders into external shading systems so that additional material
properties and lighting can be applied, as shown in Figure 4.1. is is accomplished by performing all
of the important work inside special functions in the vertex and fragment shaders. In the vertex shader,
the SlugUnpack() function transforms some vertex attributes from their input format to the format
consumed by the fragment shader, and the SlugDilate() function performs dynamic glyph dilation. In
the fragment shader, the SlugRender() is called to calculate the final glyph color and coverage. In
standalone shaders, there is a main() function that does nothing except call the special functions and
return the result. e flags passed as the third parameter to the GetVertexShaderSourceCode() and
GetFragmentShaderSourceCode() functions can be used to omit the main() function as well as other
components so that only the essential glyph shading code is included in cases where an external shading
system will supply the remaining code. is is discussed further in the documentation for the
GetVertexShaderSourceCode() and GetFragmentShaderSourceCode() functions.

Figure 4.1. Slug shaders are incorporated into an external shading system where material
properties and lighting are applied.

36 Rendering

4.2. Building a Slug
Before Slug can perform layout operations on a block of text, the original Unicode characters in the text
string are first translated into glyphs. e application explicitly directs Slug to take this step by calling
the CompileString() function to generate information about the glyphs, fonts, layout features, and
directional runs and store them in a CompiledStorage object. Once this step has been completed, other
library functions can be called to determine vertex and triangle counts, to make measurements, and to
perform final text layout. Each of these functions makes use of the compiled data already stored in the
CompiledStorage object by a preceding call to the CompileString() function. e actual parameter
passed to the API functions is a pointer to a CompiledText structure, which is a header at the beginning
of the compiled storage data. (is allows for compiled storage buffers of varying size. See the
MakeCompactCompiledText() function.)

Once a text string has been compiled, the vertex and triangle data needed to render the corresponding
glyphs are generated by the BuildSlug() function, and the required storage sizes for this data are
determined by calling the CountSlug() function. An application typically calls the CountSlug()
function first, then allocates GPU-visible vertex buffers using the rendering API, and finally calls the
BuildSlug() function to write the vertex and triangle data directly to those buffers.

Information about the vertex and triangle storage is passed to the BuildSlug() function through the
GeometryBuffer structure, which holds a pointer to a Vertex array, a pointer to a Triangle array, and
a base vertex index. ese fields are each updated by the BuildSlug() function, and the difference
between their final and initial values must be calculated to determine the actual numbers of vertices and
triangles that were generated, as shown in Listing 4.4. e CountSlug() function returns the maximum
amount of storage that could be required, but the actual amount used by the BuildSlug() function
could be less depending on factors such as clipping planes that are not able to be considered by the
CountSlug() function.

Listing 4.4. is code builds the vertex and triangle data for a text string. e pointers stored in the
GeometryBuffer structure are intended to be mapped from GPU-visible memory. e final vertex and
triangle counts are determined by subtracting the original values of these pointers from the updated
values aer the call to the BuildSlug() function.

void BuildText(const Slug::FontHeader *fontHeader,
 const Slug::LayoutData *layoutData,
 const char *text)
{
 int32 vertexCount;
 int32 triangleCount;
 Slug::GeometryBuffer geometryBuffer;

 const Slug::CompiledText *compiledText = Slug::CompileString(fontHeader,
 layoutData, text);

4.3. Multi-Line Text 37

 // Determine maximum vertex and triangle counts.
 Slug::CountSlug(compiledText, nullptr, fontHeader,
 &vertexCount, &triangleCount);

 int32 vertexBufferSize = vertexCount * sizeof(Slug::Vertex);
 int32 triangleBufferSize = triangleCount * sizeof(Slug::Triangle);

 /* Allocate buffers here with rendering API. */

 Slug::Vertex *vertexBase = /* mapped ptr to vertex buffer */;
 Slug::Triangle *triangleBase = /* mapped ptr to triangle buffer */;

 geometryBuffer.vertexData = vertexBase;
 geometryBuffer.triangleData = triangleBase;
 geometryBuffer.vertexIndex = 0;

 Slug::BuildSlug(compiledText, nullptr, fontHeader, Point2D{0.0F, 0.0F},
 &geometryBuffer);

 // Calculate actual vertex and triangle counts.
 vertexCount = geometryBuffer.vertexData − vertexBase;
 triangleCount = geometryBuffer.triangleData − triangleBase;
}

4.3. Multi-Line Text
Slug includes high-level functions that can be used to lay out text occupying multiple lines with a given
maximum span. ese functions break text into multiple lines, count the numbers of vertices and
triangles that will be generated by a subset of those lines of the text, and generate the actual geometry
needed to render a subset of those lines. Aer text is broken into lines, the process of rendering multi-
line text is similar to that for a single line of text, as demonstrated in Listing 4.5.

Listing 4.5. is code breaks a text string into multiple lines and builds the vertex and triangle data
needed to render it. e maxSpan parameter specifies the horizontal width of the box into which the text
is fit. e pointers stored in the GeometryBuffer structure are intended to be mapped from GPU-visible
memory. e final vertex and triangle counts are determined by subtracting the original values of these
pointers from the updated values aer the call to the BuildMultiLineText() function.

void BuildParagraphs(const Slug::FontHeader *fontHeader,
 const Slug::LayoutData *layoutData,
 const char *text, float maxSpan)
{
 static const uint32 softBreakArray[3] = {' ', '-', '/'};
 static const uint32 hardBreakArray[1] = {'\n'};
 static const uint32 trimArray[1] = {' '};

38 Rendering

 int32 vertexCount;
 int32 triangleCount;
 Slug::GeometryBuffer geometryBuffer;
 Slug::LineData lineData[16];

 const Slug::CompiledText *compiledText = Slug::CompileString(fontHeader,
 layoutData, text);

 // Break the text into multiple lines up to a maximum of 16.
 int32 lineCount = Slug::BreakMultiLineText(compiledText, fontHeader,
 maxSpan, 3, softBreakArray, 1, hardBreakArray,
 1, trimArray, 16, lineData);

 // Determine maximum vertex and triangle counts.
 Slug::CountMultiLineText(compiledText, fontHeader, 0,
 lineCount, lineData, &vertexCount, &triangleCount);

 int32 vertexBufferSize = vertexCount * sizeof(Slug::Vertex);
 int32 triangleBufferSize = triangleCount * sizeof(Slug::Triangle);

 /* Allocate buffers here with rendering API. */

 Slug::Vertex *vertexBase = /* mapped ptr to vertex buffer */;
 Slug::Triangle *triangleBase = /* mapped ptr to triangle buffer */;

 geometryBuffer.vertexData = vertexBase;
 geometryBuffer.triangleData = triangleBase;
 geometryBuffer.vertexIndex = 0;

 Slug::BuildMultiLineText(compiledText, fontHeader, 0,
 lineCount, lineData, Point2D{0.0F, 0.0F}, maxSpan,
 &geometryBuffer);

 // Calculate actual vertex and triangle counts.
 vertexCount = geometryBuffer.vertexData − vertexBase;
 triangleCount = geometryBuffer.triangleData − triangleBase;
}

e BreakMultiLineText() function determines the locations where a text string should be broken to
start new lines, and it provides a flexible method for specifying so break and hard break characters. A
so break character is one aer which a line break is allowed but not required, and these characters
usually include spaces and hyphens. A hard break character is one aer which a line break is always
required, and these characters usually include newlines (U+000A). e BreakMultiLineText()
function outputs an array of LineData structures that each contain the string length and physical span
of a line of text.

4.4. Custom Glyph Layout 39

So that nonprinting characters at the end of a line don’t wrap around to the next line, even if they exceed
the maximum span of the text, Slug allows the specification of a set of trim characters. Any trim
characters occurring at the end of a line are always kept with that line, and they don’t participate in
measurements used for text alignment. Trim characters usually include spaces and other characters that
don’t generate any geometry.

e CountMultiLineText() function is the multi-line analog of the CountSlug() function. It calculates
the maximum number of vertices and triangles that could be needed to render a text string that has
been broken into multiple lines. It can be used to count only a subset of the lines determined by the
BreakMultiLineText() function so that it’s possible to break text into lines once and then rebuild the
text that’s actually rendered more than once with that information. is would be useful in cases such
as text being scrolled through a view of some kind.

Finally, the BuildMultiLineText() function is the multi-line analog of the BuildSlug() function. It
builds the vertex and triangle arrays for the same set of lines that were processed by the CountMulti-
LineText() function. is function uses the textAlignment and textLeading fields of the LayoutData
structure to properly calculate the horizontal position of the text on each line and the spacing between
consecutive lines. e BuildMultiLineText() function can also apply the paragraph attributes specified
by the paragraphSpacing, leftMargin, rightMargin, and firstLineIndent fields of the LayoutData
structure.

4.4. Custom Glyph Layout
Instead of immediately generating vertex and triangle data, Slug can generate arrays containing glyph
indices, drawing positions, transforms, and colors. is information can then be modified by the
application in order to perform custom text layout. Aerward, Slug can generate vertex and triangle
data using the modified per-glyph data. is information is also useful in cases where the application
renders glyphs using some external method. To use this functionality, the LayoutSlug() and Layout-
MultiLineText() functions are used in place of the BuildSlug() and BuildMultiLineText()
functions. e CountSlug() and CountMultiLineText() functions are still needed to determine the
number of glyphs that would be generated for a given text string. Aer any modifications are made to
the per-glyph data, the AssembleSlug() function is called to generate the vertex and triangle data based
on the arrays of glyph indices, positions, transforms, and colors.

Before the LayoutSlug() or LayoutMultiLineText() function is called, memory must be allocated for
separate arrays that will receive glyph indices, glyph positions, glyph transforms, and glyph colors.
Glyph indices and positions are always generated, but transforms and colors can optionally be omitted
from the data that is returned. e number of glyphs for which space needs to be allocated is the return
value of the corresponding CountSlug() or CountMultiLineText() function. Text decorations
(underline and strikethrough) and special effects (drop shadow and outline) are ignored when
calculating the number of glyphs and generating their positions. However, special effects are still applied
by the AssembleSlug() function if they are enabled.

40 Rendering

4.5. Placeholders
ere may be cases in which the application needs to insert its own custom graphics into a string of text.
For example, the application may want to display an icon inside a sentence telling the user what button
to press to perform some action. Slug is able to reserve space for these kinds of graphics through the use
of placeholders. Whenever a placeholder appears in a text string, Slug leaves open the amount of blank
horizontal space associated with that placeholder, and it reports its location so the application can later
fill the space with its own graphics by other means.

A placeholder is identified in a text string by any Unicode value falling in a special range designated by
the application as placeholder representatives. By default, placeholder identifiers begin at U+F0000,
which is the first value in a large supplementary private use area defined by the Unicode standard.
However, the application may choose any nonzero Unicode value as the first placeholder identifier by
setting the placeholderBase field of the LayoutData structure. e number of placeholder types is given
by the placeholderCount field, and placeholder functionality is enabled when this count is not zero.
Each type of placeholder may appear an unlimited number of times in a text string.

When placeholders are enabled with placeholderBase set to b and placeholderCount set to n, any
Unicode value u in the range is interpreted as the type of placeholder with index .
e widths of the various types of placeholders are supplied by the application through the
placeholderWidthArray field of the LayoutData structure, which must contain n entries. Whenever a
placeholder of a specific type index i is encountered in a text string, Slug looks up its width under entry
i in the array and advances the drawing position by that amount.

e CountSlug() or CountMultiLineText() functions return the total number T of placeholders of any
kind occurring in a text string. To obtain the types and positions of those placeholders when the text is
laid out, the application allocates an array of PlaceholderData structures large enough to hold T entries
and passes it the BuildSlug(), BuildMultiLineText(), LayoutSlug(), or LayoutMultiLineText()
function through a PlaceholderBuffer structure. Each PlaceholderData structure contains number
of glyphs preceding the placeholder, the index i of the type of placeholder that occurred in the text, and
the placeholder’s position. In a manner similar to the numbers of vertices and triangles written
through pointers contained in the GeometryBuffer structure, the actual number of placeholders written
through the pointer contained in the PlaceholderBuffer structure is determined by subtracting the
original value of the pointer from the its value aer text has been laid out.

4.6. Multiple Fonts
e functions for building slugs and multiple lines of text described up to this point all work with a
single font. Slug includes extended versions of each of these functions that support the use of multiple
fonts in the same text string through a flexible data structure called a font map. A font map defines the
relationship among three types of information. First, the application supplies a master list of fonts that
could be used by a text string. Second, the application defines a set of 32-bit type codes that are used to
select font styles inside a text string using format directives. ese styles can specify typical variations
such as italic and bold, or they can be used to change typefaces completely. ird, the application
provides a table that maps type codes to the indices of the fonts to be used in the master font list. is
table is two-dimensional because several fonts can be specified for each type code. Whenever a glyph is

4.6. Multiple Fonts 41

not available in the first font, later fonts are searched until one containing the glyph is found. is is
particularly useful when a text string contains unusual characters because fonts rarely contain glyphs
for the whole of Unicode.

e font mapping mechanism is illustrated in Figure 4.2. In this example, type codes are specified for
four different styles. e code 0 is used for the regular Times font. Four-character codes are used for the
other three styles so that it is easy to understand the meaning of the font() directives embedded in the
text string. (See Chapter 6 about format directives.) Associated with each style, identified by its type
code, is an array of indices into the master font list. ese indices specify the primary font and a set of
fallback fonts for the style. A different number of fonts can be specified for each style. Here, fallback
fonts are specified for emoji and miscellaneous symbols for the regular, 'ital', and 'bold' styles, but
no fallbacks are specified for the 'code' style.

Each of the functions in the Slug library that operates with a single font has a counterpart with the Ex
suffix that operates with multiple fonts. For most of these functions, the parameter taking a pointer to a
FontHeader structure is replaced by two parameters that take a font count and a pointer to an array of
FontDesc structures. In the cases of the LayoutSlugEx() and AssembleSlugEx() functions, as well as
their multi-line equivalents, one more parameter holding a pointer to an array of per-glyph font indices
is also added. e CompileStringEx() function takes a pointer to a FontMap structure so that the final
font to which every glyph belongs can be determined at the time when a text string is compiled into a
sequence of glyphs.

e FontDesc structure holds a pointer to a FontHeader structure associated with a particular font
resource. It also holds a scale value and vertical offset that are applied to the font whenever glyphs are
taken from it. is provides a way to compensate for the fact that different fonts tend to have different
capital heights within the em square, and some fonts like those containing emoji may need to be shied
up or down to align well with the other fonts specified by the font map.

42 Rendering

Figure 4.2. In this example of a font map structure, there are four styles identified by 32-bit type
codes. For each style, there is an array of font indices that correspond to a primary font and a
set of fallback fonts. ese indices refer to entries in the master font list, which contains six fonts
in this case.

Because each font has its own pair of texture maps, a text string using multiple fonts cannot be rendered
with a single draw call. Instead, a separate draw call has to be issued for each font aer the corresponding
curve and band textures have been bound. No other rendering state needs to change because the same
shaders and vertex buffers can be used. e CountSlugEx() and CountMultiLineTextEx() functions
return separate vertex and triangle counts for each font. Enough vertex buffer space can then be
allocated for the total number of vertices and triangles, and the geometry can be generated at different
locations within the buffers by the BuildSlugEx() and BuildMultiLineTextEx() functions. is is
demonstrated in Listing 4.6.

Listing 4.6. is code builds the vertex and triangle data for a text string using multiple fonts, up to a
maximum of kMaxFontCount. Compare to Listing 4.4, and note how vertex counts, triangle counts, and
geometry previously generated for one font are now stored in arrays corresponding to many fonts.

void BuildText(int32 fontCount,
 const Slug::FontDesc *fontDesc,
 const Slug::FontMap *fontMap,
 const Slug::LayoutData *layoutData,
 const char *text)
{
 int32 vertexCount[kMaxFontCount];
 int32 triangleCount[kMaxFontCount];
 Slug::GeometryBuffer geometryBuffer[kMaxFontCount];
 Slug::Vertex *vertexBase[kMaxFontCount];
 Slug::Triangle *triangleBase[kMaxFontCount];

 const Slug::CompiledText *compiledText = Slug::CompileStringEx(fontCount,
 fontDesc, fontMap, layoutData, text);

4.6. Multiple Fonts 43

 // Determine maximum vertex and triangle counts.
 Slug::CountSlugEx(compiledText, nullptr, fontCount, fontDesc,
 vertexCount, triangleCount);

 int32 totalVertexCount = vertexCount[0];
 int32 totalTriangleCount = triangleCount[0];
 for (int32 i = 1; i < fontCount; i++)
 {
 totalVertexCount += vertexCount[i];
 totalTriangleCount += triangleCount[i];
 }

 int32 vertexBufferSize = totalVertexCount * sizeof(Slug::Vertex);
 int32 triangleBufferSize = totalTriangleCount * sizeof(Slug::Triangle);

 /* Allocate buffers for total size here with rendering API. */

 vertexBase[0] = /* mapped ptr to vertex buffer */;
 triangleBase[0] = /* mapped ptr to triangle buffer */;

 geometryBuffer[0].vertexData = vertexBase[0];
 geometryBuffer[0].triangleData = triangleBase[0];
 geometryBuffer[0].vertexIndex = 0;

 for (int32 i = 1; i < fontCount; i++)
 {
 vertexBase[i] = vertexBase[i − 1] + vertexCount[i − 1];
 triangleBase[i] = triangleBase[i − 1] + triangleCount[i − 1];

 geometryBuffer[i].vertexData = vertexBase[i];
 geometryBuffer[i].triangleData = triangleBase[i];
 geometryBuffer[i].vertexIndex = vertexBase[i] − vertexBase[0];
 }

 Slug::BuildSlugEx(compiledText, nullptr, fontCount, fontDesc,
 Point2D{0.0F, 0.0F}, geometryBuffer);

 // Calculate actual vertex and triangle counts.
 for (int32 i = 0; i < fontCount; i++)
 {
 vertexCount[i] = geometryBuffer[i].vertexData − vertexBase[i];
 triangleCount[i] = geometryBuffer[i].triangleData − triangleBase[i];
 }
}

44 Rendering

4.7. Text Colors
e color of the text is controlled by the textColor field of the LayoutData structure, which is itself
another structure of the type ColorData. Text may be rendered as a solid color or as a gradient, as
specified by the gradientFlag field of the ColorData structure. If the gradient is enabled, then the text
color varies smoothly between two colors attained at two given y coordinates in em space. is
information is used by the BuildSlug() function to calculate a color for each vertex. If a glyph effect is
enabled (see Section 4.12 below), then the color of the effect is separately controlled by another
ColorData structure named effectColor.

e color output by the Slug shaders is linear RGB color. is color must be converted to gamma-
corrected sRGB for proper display, and this is typically done by enabling hardware sRGB conversion for
the render target. e blending function should use a source factor of source alpha and a destination
factor of inverse source alpha.

4.8. Color Glyph Layers
A font may contain color layer data for some or all of its glyphs, and this information is typically present
in fonts that include emoji glyphs. Multicolor glyphs are rendered as a stack of separate layers using the
same shaders that render ordinary monochrome glyphs, and each layer is rendered with a solid color.
e color and gradient information in the LayoutData structure have no effect on the colors of the
individual layers.

Rendering with multiple color layers is enabled by default, but it can be disabled by setting the kLayout-
LayerDisable flag in the layoutFlags field of the LayoutData structure. When an attempt is made to
render a multicolor glyph while color layers are disabled, the corresponding monochrome glyph is
rendered instead, if it is available in the font.

4.9. Optical Weight
e Slug shaders have a special option that can be used to increase the optical weight, or apparent
heaviness, of glyphs and icons when they are rendered at small sizes. is is useful for counteracting the
lightening that occurs when a font has been shrunk to a size at which few individual pixels are fully
covered by a typical glyph, and it works best for dark-colored glyphs on a light background. e optical
weight option boosts the coverage value by adding a short calculation to the shader. It is enabled by
setting the kRenderOpticalWeight bit in the renderFlags field of the LayoutData structure.

4.10. Clipping
A line of text can be clipped by vertical planes on the le and right by the BuildSlug() function or
BuildMultiLineText() function. Clipping is enabled by setting the kLayoutClippingPlanes bit in the
layoutFlags field of the LayoutData structure. e object-space positions of the clip planes are specified
by the clipLeft and clipRight fields of the LayoutData structure.

4.11. Effects 45

e CountSlug() function is not able to take clipping into consideration, so it always returns the
maximum numbers of vertices and triangles that could be generated without clipping. is allows an
application to allocate enough space one time for all cases and simply call BuildSlug() or BuildMulti-
LineText() by itself whenever the clipping configuration changes (e.g., for horizontally scrolling text).

4.11. Effects
Slug can render a hard drop shadow effect and/or a geometric outline effect for every glyph. ese are
enabled by specifying either kEffectShadow, kEffectOutline, or kEffectOutlineShadow in the
effectType field of the LayoutData structure. e shadow effect is always available, but the outline effect
requires that expanded outline contours be generated when a font is converted to the Slug format. (See
Chapter 7 for details.) When any of these effects is enabled, the CountSlug() and CountMultiLine-
Text() functions account for the additional geometry that would be generated, and the BuildSlug()
and BuildMultiLineText() functions generate extra vertices and triangles for the effects. e geometry
corresponding to an effect precedes the ordinary geometry for each glyph in the output buffers so that
glyph effects are always rendered behind the ordinary glyphs.

When both the outline and shadow effects are enabled, the shadow has the same shape as the outline
glyphs. If both effects are enabled, but a font does not include expanded outline contours, geometry is
generated as if only the shadow effect is enabled.

e effect geometry can be offset from the text geometry with the shadowOffset and outlineOffset
fields of the LayoutData structure. An offset is necessary for the shadow effect, but it can be applied to
the outline effect as well.

e fact that an effect is enabled never changes the positions that are calculated for each glyph. In the
case of the outline effect, it may be desirable to add some positive tracking to prevent adjacent glyphs
from colliding when thick outlines are being used.

4.12. Icons and Pictures
Using the same algorithm that allows glyphs to be rendered directly from curve data on the GPU, Slug
is also able to render arbitrary vector-based icons. An icon can be monochrome, or it can be made up
of multiple color layers. Like glyphs, icons are defined by a set of closed contours composed of quadratic
Bézier curves. e source data can come from an album file, or it can be supplied directly to the Slug
library by calling the ImportIconData() or ImportMultiColorIconData() function. ose functions
fill out an IconData structure and generate the curve and band texture data needed to render an icon.

An icon is rendered by calling the BuildIcon() function to generate a list of vertices and triangles.
Depending on the geometry type requested, the number of vertices can range from 3 to 8, and the
number of triangles can range from 1 to 6. Once the vertex and triangle data is available, an icon is
rendered with the same shaders that are used to render glyphs.

Unlike glyphs, an icon composed of multiple color layers is rendered with a special shader that computes
the output of all layers at once. is type of shader is selected by the GetShaderIndices() function by
including the kRenderMulticolor flag in the renderFlags parameter. (is flag is valid only for icons.)

46 Rendering

Rendering multiple color layers in this manner can be slower than rendering the layers separately, but it
allows an icon to be properly blended with a background using partial transparency.

A picture is similar to an icon, but it is generally used to render more complicated graphics. Icons
support only paths filled with a solid color, but pictures also support strokes and gradients. Pictures are
created by specifying the -pict switch when a vector graphics file is transformed into an album by the
slugicon tool. (See Chapter 8.) Pictures are always rendered as a set of monochrome components, and
the color of each component is stored in the vertex data generated by the BuildPicture() function. An
icon that never needs to be partially transparent can always be imported as a picture. e picture
equivalent of an icon generates more vertices and triangles, but it almost always renders with better
performance.

4.13. Bounding Polygons
Slug normally renders each glyph as a single quad that coincides with the glyph’s bounding box. When
glyphs are rendered at large sizes, there are oen significant areas of empty space inside the bounding
box, so Slug provides an optimization that renders with a tighter polygon having 3–6 vertices and 1–4
triangles. e difference is shown in Figure 4.3. Due to various factors, this optimization may not yield
a speed improvement at small font sizes, so care should be taken to measure the performance difference
and use the bounding polygons only when they provide a clear advantage.

Bounding polygons are enabled by changing the geometryType field of the LayoutData structure to
kGeometryPolygons. is option affects the numbers of vertices and triangles returned by the
CountSlug() and CountMultiLineText() functions, but it does not affect which shader is used to render
glyphs. e same optimization is available for icons and pictures, except in this case, the kGeometry-
Polygons geometry type is passed directly to the CountIcon(), CountPicture(), BuildIcon(), and
BuildPicture() functions.

For bounding polygons to be available for a font, the font must be imported by the slugfont tool with
bounding polygon generation enabled. By default, the maximum number of vertices for a bounding
polygon is only four, and this means that each glyph can be bounded by a triangle or a quadrilateral. A
maximum of five or six vertices can be specified in order to allow tighter polygons, but this requires
significantly more computation during the import process. Depending on the size at which glyphs are
rendered, polygons with a larger number of vertices may not yield a speed improvement despite having
a smaller area due to the fact that pixels belonging to 2×2 quads along interior edges are double shaded
by the GPU. In general, polygons having a larger number of vertices are more effective for larger font
sizes. A factor that multiplies the cost of interior edges (based on their lengths) can be adjusted to either
encourage or discourage higher numbers of vertices during the import process. Setting this edge cost
factor to zero causes the polygon with the smallest area to be chosen regardless of the lengths of interior
edges. is would be appropriate for fonts that are always rendered at very large sizes. Higher edge cost
factors make it more difficult for polygons with larger numbers of vertices to be selected, which would
be appropriate for fonts that could be rendered at smaller sizes.

4.14. Optimization 47

Figure 4.3. To reduce the number of pixels rendered for most glyphs, simple quads on the le
are replaced with glyph-specific polygons having 3–6 vertices on the right.

4.14. Optimization
Because Slug renders glyphs and icons directly from mathematical curves, such as those contained in a
font, the fragment shader has to perform substantially more computation than a font rendering solution
based on any kind of prerendered texture images. e previous section discusses the use of tight
bounding polygons to reduce the number of pixels that need to be processed. is section discusses
additional ways to minimize the amount of computation by enabling special optimizations in Slug and
by making wise font selections that don’t waste rendering time.

Slug has the option of generating only a single triangle per glyph or icon so that rectangle primitives can
be used when they are exposed by the rendering API. (In Vulkan and OpenGL, rectangle primitives are
exposed through extensions named VK_NV_fill_rectangle and GL_NV_fill_rectangle.) Rectangle
primitives are enabled by changing the geometryType field of the LayoutData structure to kGeometry-
Rectangles. is option is useful when glyph or icon bounding boxes known to always be aligned to
the screen x and y axes because rectangle primitives simply fill the screen-space rectangle enclosing the
three vertices of a triangle. e advantage to using rectangle primitives is that there is no longer an
internal edge where fragment shaders are executed twice per pixel in the 2×2 quads intersecting both
triangles. Be aware that if rectangle primitives are rendered with user clipping planes enabled, then the
GPU throws out the entire primitive whenever any one of its vertices is clipped.

When rendering pictures, there may be many components that are made up of only straight lines. Slug
can take advantage of this fact to select a faster path in the shaders for these specific components as they
are encountered during the process of rendering an entire picture. To enable this optimization, the
kRenderLinearCurves bit should be set in the renderFlags parameter passed to the GetShader-
Indices() function.

e greatest performance gains can oen be achieved by simply selecting a font that requires less
computation in the Slug shader. e most important factor is the number of Bézier curves making up
each glyph because performance is directly related to the number of curves that have to be considered
inside the shader. (Slug goes to great lengths to ensure that only a small subset of a glyph’s full set of
curves are examined at each pixel.) A font having the fewest control points possible while still possessing
the desired style characteristics should be selected for best performance.

48 Rendering

Due to the way in which the Slug rendering algorithm works, a straight horizontal or vertical line in a
glyph has half the shading cost of any other Bézier curve. If the situation allows it, fonts containing such
straight lines should be preferred over fonts whose glyphs have strokes that are near but not exactly
horizontal or vertical.

Glyphs belonging to simple fonts like Arial sometimes have extra curves in them called ink traps. ese
are placed inside tight corners by font designers to create extra space where ink may spread out when
the font is used in print, but they serve no purpose in on-screen rendering. Fonts containing ink traps
render a little bit slower than similar fonts without ink traps, so they should be avoided when possible.

 49

5
Programming Reference

is chapter provides reference documentation for the functions and data structures exposed in the Slug
library’s application programming interface (API), arranged in alphabetical order.

e following API functions perform the primary text rendering services provided by the Slug library.

• MeasureSlug()
• CountSlug()
• BuildSlug()
• LayoutSlug()
• AssembleSlug()
• BreakMultiLineText()
• CountMultiLineText()
• BuildMultiLineText()
• LayoutMultiLineText()

• GetFontHeader()
• GetFontKeyData()
• SetDefaultLayoutData()
• UpdateLayoutData()
• CalculateGlyphCount()
• BuildTruncatableSlug()
• BuildTruncatedMultiLineText()
• LocateSlug()
• TestSlug()

e following API functions perform the primary icon and picture rendering services provided by the
Slug library.

• CountIcon()
• BuildIcon()
• CountPicture()
• BuildPicture()

• GetAlbumHeader()
• ExtractAlbumTextures()
• ImportIconData()
• ImportMulticolorIconData()

e following API functions are used to create fills and strokes at run time.

• CountFill()
• CountStroke()
• CreateFill()
• CreateStroke()

• SetDefaultFillData()
• SetDefaultStrokeData()

e following API functions are used to create textures and shaders used for rendering.

• GetCurveTextureStorageSize()
• GetBandTextureStorageSize()
• ExtractCurveTexture()
• ExtractBandTexture()

• GetShaderIndices()
• GetVertexShaderSourceCode()
• GetFragmentShaderSourceCode()

50 Programming Reference

AlbumHeader structure
e AlbumHeader structure contains general information about an album.

Fields

Field Description

int32
iconCount

e total number of icons in the album.

int32
iconDataOffset

e offset to the table of IconData structures.

int32
pictureCount

e total number of pictures in the album.

int32
pictureDataOffset

e offset to the table of PictureData structures.

int32
meshVertexOffset

e offset to the mesh vertex data (used for strokes).

int32
meshTriangleOffset

e offset to the mesh triangle data (used for strokes).

Description
e AlbumHeader structure contains information about the rendering characteristics of an album. Most
of the fields are used internally by the Slug library functions that accept an album header. A pointer to
an AlbumHeader structure can be obtained from the raw .slug file data by calling the GetAlbumHeader()
function.

AssembleSlug() function 51

AssembleSlug() function
e AssembleSlug() function generates the vertices and triangles for a set of glyphs using specific
positions, transforms, and colors supplied by the application.

Prototype

void AssembleSlug(const FontHeader *fontHeader,
 const LayoutData *layoutData,
 int32 glyphCount,
 const int32 *glyphIndexBuffer,
 const Point2D *positionBuffer,
 const Matrix2D *matrixBuffer,
 const colorType *colorBuffer,
 GeometryBuffer *geometryBuffer,
 Box2D *textBox = nullptr);

Parameters

Parameter Description

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

layoutData A pointer to a LayoutData structure containing the text layout state that is
applied.

glyphCount e number of glyphs for which vertex and triangle data is generated.

glyphIndexBuffer A pointer to an array of integers specifying the glyph indices. is parameter
cannot be nullptr, and the array it points to must be at least as large as the
glyphCount parameter.

positionBuffer A pointer to an array of Point2D structures specifying the glyph positions. is
parameter cannot be nullptr, and the array it points to must be at least as
large as the glyphCount parameter.

matrixBuffer A pointer to an array of Matrix2D structures specifying the glyph transforms.
is parameter cannot be nullptr, and the array it points to must be at least as
large as the glyphCount parameter.

colorBuffer A pointer to an array of Color4U or ColorRGBA structures specifying the glyph
colors. is parameter can be nullptr, in which case colors are determined by
the state contained in the LayoutData structure. If this parameter is not

52 Programming Reference

nullptr, then the array it points to must be at least as large as the glyphCount
parameter.

geometryBuffer A pointer to the GeometryBuffer structure containing information about
where the output vertex and triangle data is stored. is parameter can be
nullptr, in which case no vertex and triangle data is generated.

textBox A pointer to a Box2D structure that receives the bounding box of the entire set
of glyphs. is parameter can be nullptr, in which case the bounding box is
not returned.

Description
e AssembleSlug() function generates all of the vertex data and triangle data needed to render a set
of glyphs using specific positions, transforms, and colors supplied by the application. is data is written
in a format that is meant to be consumed directly by the GPU.

e per-glyph information provided to the AssembleSlug() function is typically generated by either the
LayoutSlug() function or the LayoutMultiLineText() function. e positions, transforms, and colors
can optionally be modified by the application prior to calling the AssembleSlug() function in order to
create a custom text layout.

e geometryBuffer parameter points to a GeometryBuffer structure containing the addresses of the
storage into which vertex and triangle data are written. ese addresses are typically in memory that is
visible to the GPU. Upon return from the AssembleSlug() function, the GeometryBuffer structure is
updated so that the vertexData and triangleData fields point to the next element past the end of the
data that was written. e vertexIndex field is advanced to one greater than the largest vertex index
written. is updated information allows for multiple sets of glyphs having the same shaders to be built
in the same vertex buffer and drawn with a single rendering command.

e actual numbers of vertices and triangles generated by the AssembleSlug() function should be
determined by examining the pointers in the GeometryBuffer structure upon return and subtracting
the original values of those pointers. e resulting differences can be less than the maximum values
returned by the CountSlug() function. e code in Listing 4.4 demonstrates how the final vertex and
triangle counts should be calculated.

If the textBox parameter is not nullptr, then the bounding box of the entire set of glyphs is written to
the location it points to. In the case that no vertices were generated (e.g., the text string consists only of
spaces), the maximum extent of the box in both the x and y directions will be less than the minimum
extent, and this condition should be interpreted as an empty box.

AssembleSlugEx() function 53

AssembleSlugEx() function
e AssembleSlugEx() function generates the vertices and triangles for a set of glyphs using specific
positions, transforms, and colors supplied by the application.

Prototype

void AssembleSlugEx(int32 fontCount,
 const FontDesc *fontDesc,
 const LayoutData *layoutData,
 int32 glyphCount,
 const uint8 *fontIndexBuffer,
 const int32 *glyphIndexBuffer,
 const Point2D *positionBuffer,
 const Matrix2D *matrixBuffer,
 const colorType *colorBuffer,
 GeometryBuffer *geometryBuffer,
 Box2D *textBox = nullptr);

Parameters

Parameter Description

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of the
fontCount parameter.

layoutData A pointer to a LayoutData structure containing the text layout state that is
applied.

glyphCount e number of glyphs for which vertex and triangle data is generated.

fontIndexBuffer A pointer to an array of integers specifying the font indices. is parameter
can be nullptr, in which case font index 0 is used for all glyphs. If this
parameter is not nullptr, then the array it points to must be at least as large as
the glyphCount parameter.

glyphIndexBuffer A pointer to an array of integers specifying the glyph indices. is parameter
cannot be nullptr, and the array it points to must be at least as large as the
glyphCount parameter.

54 Programming Reference

positionBuffer A pointer to an array of Point2D structures specifying the glyph positions. is
parameter cannot be nullptr, and the array it points to must be at least as
large as the glyphCount parameter.

matrixBuffer A pointer to an array of Matrix2D structures specifying the glyph transforms.
is parameter cannot be nullptr, and the array it points to must be at least as
large as the glyphCount parameter.

colorBuffer A pointer to an array of Color4U or ColorRGBA structures specifying the glyph
colors. is parameter can be nullptr, in which case colors are determined by
the state contained in the LayoutData structure. If this parameter is not
nullptr, then the array it points to must be at least as large as the glyphCount
parameter.

geometryBuffer A pointer to an array of GeometryBuffer structures containing information
about where the output vertex and triangle data is stored. e number of
elements in this array must be equal to the value of the fontCount parameter.
is parameter can be nullptr, in which case no vertex and triangle data is
generated.

textBox A pointer to a Box2D structure that receives the bounding box of the entire set
of glyphs. is parameter can be nullptr, in which case the bounding box is
not returned.

Description
e AssembleSlugEx() function is an extended version of the AssembleSlug() function capable of
handling multiple fonts through the mapping mechanism described in Section 4.6. A call to the
AssembleSlug() function is internally forwarded to the AssembleSlugEx() function with the
fontCount parameter set to 1, the fontDesc parameter set to the address of a single FontDesc structure
containing the font header with default scale and offset, and the fontIndexBuffer parameter set to
nullptr.

e fontCount and fontDesc parameters specify the master font list containing the full set of fonts that
can be used with the text string. e fontIndexBuffer parameter specifies the font index within the
master font list for each glyph, which would normally be generated by the LayoutSlugEx() function.

Aside from the first two parameters, the remaining parameters passed to the AssembleSlugEx()
function have the same meanings as the parameters with the same names passed to the AssembleSlug()
function. e additional fontIndexBuffer parameter optionally points to an array that specifies the
index of the font used by each glyph.

BreakMultiLineText() function 55

BreakMultiLineText() function
e BreakMultiLineText() function determines the locations at which text should be broken into
multiple lines.

Prototype

int32 BreakMultiLineText(const CompiledText *compiledText,
 const FontHeader *fontHeader,
 float maxSpan,
 int32 softBreakCount,
 const uint32 *softBreakArray,
 int32 hardBreakCount,
 const uint32 *hardBreakArray,
 int32 trimCount,
 const uint32 *trimArray,
 int32 maxLineCount,
 LineData *lineDataArray,
 const LineData *previousLine = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

maxSpan e maximum physical horizontal span of the text.

softBreakCount e number of so break characters specified by the softBreakArray
parameter.

softBreakArray A pointer to an array of so break characters with softBreakCount entries.
e values in this array are Unicode characters, and they must be sorted in
ascending order. is parameter can nullptr only if the softBreakCount
parameter is 0.

hardBreakCount e number of hard break characters specified by the hardBreakArray
parameter.

hardBreakArray A pointer to an array of hard break characters with hardBreakCount entries.
e values in this array are Unicode characters, and they must be sorted in

56 Programming Reference

ascending order. is parameter can nullptr only if the hardBreakCount
parameter is 0.

trimCount e number of trim characters specified by the trimArray parameter.

trimArray A pointer to an array of trim characters with trimCount entries. e values in
this array are Unicode characters, and they must be sorted in ascending order.
is parameter can nullptr only if the trimCount parameter is 0.

maxLineCount e maximum number of lines for which data is returned through the
lineDataArray parameter.

lineDataArray A pointer to an array of LineData structures to which information about each
line of text is written. e array must be large enough to hold the maximum
number of lines specified by the maxLineCount parameter.

previousLine A pointer to a LineData structure containing information about the previous
line in the text. is parameter can be nullptr to indicate that there is no
previous line. e LineData structure specified by this parameter should be
one that was generated by a preceding call to the BreakMultiLineText()
function.

Description
e BreakMultiLineText() function determines the locations at which text should be broken into
multiple lines such that each line fits within the specific horizontal span given by the maxSpan parameter.
ese locations are determined under the constraint that the string can be broken only where certain
conditions are satisfied.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileString() function. e pointer passed to the fontHeader parameter must be the
same that was passed to the fontHeader parameter of the CompileString() function.

If the softBreakCount parameter is not zero, then the softBreakArray parameter must point to an
array of Unicode characters with softBreakCount entries. ese values represent the set of characters
aer which a line break is allowed and typically include characters such as a space (U+0020), hyphen
(U+002D), and slash (U+002F). Advanced uses might also include characters such as an em dash
(U+2014) or any of the sized spaces beginning at U+2000.

If the kLayoutSoftHyphen flag is set in the layoutFlags field of the LayoutData structure specified by
the layoutData parameter, then a line break may occur aer a so hyphen character with Unicode value
U+00AD. e so hyphen character must also be included in the array of so break characters specified
by the softBreakArray parameter. So hyphens are typically placed inside words where it is acceptable
to break lines, and a so hyphen is rendered only if it is the final character on a line. Any so hyphen
character that does not correspond to an actual line break is not displayed and does not contribute to
the physical span of a line.

BreakMultiLineText() function 57

If the hardBreakCount parameter is not zero, then the hardBreakArray parameter must point to an
array of Unicode characters with hardBreakCount entries. ese values represent the set of characters
aer which a line break is mandatory and typically include characters such as a newline (U+000A). A
hard break character usually indicates that the current paragraph ends at the break and a new paragraph
begins with the next character. If paragraph attributes are enabled, then this causes paragraph spacing
to be applied before the new paragraph and indentation to be applied to the new paragraph’s first line.
To specify that a particular hard break character should not begin a new paragraph, its character code
can be combined with the value kBreakSameParagraph with logical OR.

To accommodate text that may contain a mixture of one-character and two-character line breaks, a hard
break character can be combined with the value kBreakCombineNext to indicate that it could be part of
a single break. When this flag is present and the hard break character is immediately followed by another
hard break character having a different character code, then the two breaks are combined into one. is
is useful for allowing CR (carriage return) and LF (line feed) to each cause a line break when occurring
in isolation, but recognizing the sequence CR-LF as a single line break. In this case, the kBreakCombine-
Next flag should be applied to the CR character in the hardBreakArray parameter.

e following flags can be combined with hard break characters using logical OR. Each of these inserts
a flag bit into the most significant byte of the character code, but they should all be disregarded when
sorting the array of hard break characters into ascending order. Only the lower 24 bits of the character
code are considered when matching characters in the text.

Value Description

kBreakSameParagraph e hard break begins a new line, but it does not begin a new paragraph.

kBreakCombineNext If the hard break is followed by another hard break having a different
character code, then two breaks are combined into one.

e maxLineCount parameter specifies the maximum number of lines for which data can be written to
the array of LineData structures specified by the lineDataArray parameter. e value returned by the
BreakMultiLineText() function is the actual number of lines for which data was written. e returned
number of lines can be zero in the case that the maximum physical horizontal span is insufficient to
contain the first character in the string.

For each line of text, a LineData structure is written in the array specified by the lineDataArray
parameter. Within this structure, the byte length of the substring of characters that fits within the
maximum span, aer being broken at an allowable point, is written to the fullTextLength field, and
the physical horizontal span of that substring is written to the fullLineSpan field. A possibly shorter
substring length and physical span that excludes trimmed characters at the end of the line are written to
the trimTextLength and trimLineSpan fields. e lengths written to the fullTextLength and trim-
TextLength fields correspond to the sizes of substrings beginning at the address specified by the text
parameter. If the line of text would constitute the last line in a paragraph, because the line ends with a
hard break character that does not have the kBreakSameParagraph flag set, then the lineFlags field of

58 Programming Reference

the LineData structure contains the kLineParagraphLast flag. Otherwise, the lineFlags field is set to
zero.

e set of excluded characters that is trimmed at the end of each line is specified by the trimCount and
trimArray parameters. If trimCount is not zero, then the trimArray parameter must point to an array
of Unicode characters having the number of entries specified by trimCount. Values specified in this
array typically include spaces and other characters that do not generate any geometry.

For any line, if a null terminator or hard break character is encountered before the maximum span is
reached, then the text is always broken at that point (before a null terminator, but aer a hard break
character). Otherwise, the text is broken aer the last so break character that was encountered before
the maximum span was reached. If no so break character was encountered, then the text is broken aer
the last character that fits within the maximum span plus any contiguous run of immediately following
characters that are included in the trim array.

If the kLayoutWrapDisable flag is set in the layoutFlags field of the LayoutData structure specified by
the layoutData parameter, then lines of text are allowed to overflow the maximum span. In this case,
lines can be broken only aer hard break characters, and the value of the maxSpan, softBreakCount, and
softBreakArray parameters have no effect (but the softBreakArray parameter must still be a valid
pointer).

If the previousLine parameter is not nullptr, then it contains information about the last line of text
that was broken by a preceding call to the BreakMultiLineText() function. When this information is
supplied, the starting position within the string given by the text parameter is advanced by the value of
the fullTextLength field of the LineData structure, and the lineFlags field of the LineData structure
determines whether the first line of the text starting at that advanced position is the first line of a new
paragraph. is mechanism can be used to accumulate data for multiple lines through multiple calls to
the BreakMultiLineText() function. (e previousLine parameter is normally nullptr for the first
such call.)

Any characters in the original text string designated as control characters by the Unicode standard may
specify so or hard break locations, but are otherwise ignored. ese characters never contribute any
spacing in the slug layout, even if the original font defines nonzero advance widths for them.

BreakMultiLineTextEx() function 59

BreakMultiLineTextEx() function
e BreakMultiLineTextEx() function determines the locations at which text should be broken into
multiple lines.

Prototype

int32 BreakMultiLineTextEx(const CompiledText *compiledText,
 int32 fontCount,
 const FontDesc *fontDesc,
 float maxSpan,
 int32 softBreakCount,
 const uint32 *softBreakArray,
 int32 hardBreakCount,
 const uint32 *hardBreakArray,
 int32 trimCount,
 const uint32 *trimArray,
 int32 maxLineCount,
 LineData *lineDataArray,
 const LineData *previousLine = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileStringEx() function.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of the
fontCount parameter.

maxSpan e maximum physical horizontal span of the text.

softBreakCount e number of so break characters specified by the softBreakArray
parameter.

softBreakArray A pointer to an array of so break characters with softBreakCount entries. e
values in this array are Unicode characters, and they must be sorted in
ascending order. is parameter can nullptr only if the softBreakCount
parameter is 0.

hardBreakCount e number of hard break characters specified by the hardBreakArray
parameter.

60 Programming Reference

hardBreakArray A pointer to an array of hard break characters with hardBreakCount entries.
e values in this array are Unicode characters, and they must be sorted in
ascending order. is parameter can nullptr only if the hardBreakCount
parameter is 0.

trimCount e number of trim characters specified by the trimArray parameter.

trimArray A pointer to an array of trim characters with trimCount entries. e values in
this array are Unicode characters, and they must be sorted in ascending order.
is parameter can nullptr only if the trimCount parameter is 0.

maxLineCount e maximum number of lines for which data is returned through the
lineDataArray parameter.

lineDataArray A pointer to an array of LineData structures to which information about each
line of text is written. e array must be large enough to hold the maximum
number of lines specified by the maxLineCount parameter.

previousLine A pointer to a LineData structure containing information about the previous
line in the text. is parameter can be nullptr to indicate that there is no
previous line. e LineData structure specified by this parameter should be one
that was generated by a preceding call to the BreakMultiLineText() function.

Description
e BreakMultiLineTextEx() function is an extended version of the BreakMultiLineText() function
capable of handling multiple fonts through the mapping mechanism described in Section 4.6. A call to
the BreakMultiLineText() function is internally forwarded to the BreakMultiLineTextEx() function
with the fontCount parameter set to 1 and the fontDesc parameter set to the address of a single
FontDesc structure containing the font header with default scale and offset.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileStringEx() function. e value of the fontCount parameter and the entries of the
array specified by the fontDesc parameter must be exactly the same values that were passed to the
fontCount and fontDesc parameters of the CompileStringEx() function.

e remaining parameters passed to the BreakMultiLineTextEx() function have the same meanings as
the parameters with the same names passed to the BreakMulti-LineText() function.

BreakSlug() function 61

BreakSlug() function
e BreakSlug() function calculates the partial length of a line of text that fits within a specified physical
horizontal span and optionally breaks the line at an allowable location.

Prototype

void BreakSlug(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 const FontHeader *fontHeader,
 float maxSpan,
 int32 softBreakCount,
 const uint32 *softBreakArray,
 int32 hardBreakCount,
 const uint32 *hardBreakArray,
 int32 trimCount,
 const uint32 *trimArray,
 LineData *lineData);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

maxSpan e maximum physical horizontal span of the text.

softBreakCount e number of so break characters specified by the softBreakArray
parameter.

softBreakArray A pointer to an array of so break characters with softBreakCount entries.
e values in this array are Unicode characters, and they must be sorted in
ascending order. is parameter can nullptr only if the softBreakCount
parameter is 0.

hardBreakCount e number of hard break characters specified by the hardBreakArray
parameter.

62 Programming Reference

hardBreakArray A pointer to an array of hard break characters with hardBreakCount entries.
e values in this array are Unicode characters, and they must be sorted in
ascending order. is parameter can nullptr only if the hardBreakCount
parameter is 0.

trimCount e number of trim characters specified by the trimArray parameter.

trimArray A pointer to an array of trim characters with trimCount entries. e values in
this array are Unicode characters, and they must be sorted in ascending order.
is parameter can nullptr only if the trimCount parameter is 0.

lineData A pointer to a LineData structure to which information about the line of text is
written.

Description
e BreakSlug() function determines how many characters of a text string can fit within a specific
horizontal span under the constraint that the string can be broken only at specific locations. e maxSpan
parameter specifies the maximum physical horizontal span of the text.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileString() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e pointer passed to
the fontHeader parameter must be the same that was passed to the fontHeader parameter of the
CompileString() function.

If the softBreakCount parameter is not zero, then the softBreakArray parameter must point to an
array of Unicode characters with softBreakCount entries. ese values represent the set of characters
aer which a line break is allowed and typically include characters such as a space (U+0020), hyphen
(U+002D), and slash (U+002F). Advanced uses might also include characters such as an em dash
(U+2014) or any of the sized spaces beginning at U+2000.

If the hardBreakCount parameter is not zero, then the hardBreakArray parameter must point to an
array of Unicode characters with hardBreakCount entries. ese values represent the set of characters
aer which a line break is mandatory and typically include characters such as a newline (U+000A). A
hard break character usually indicates that the current paragraph ends at the break and a new paragraph
begins with the next character. If paragraph attributes are enabled, then this causes paragraph spacing
to be applied before the new paragraph and indentation to be applied to the new paragraph’s first line.
To specify that a particular hard break character should not begin a new paragraph, its character code
can be combined with the value kBreakSameParagraph with logical OR.

To accommodate text that may contain a mixture of one-character and two-character line breaks, a hard
break character can be combined with the value kBreakCombineNext to indicate that it could be part of
a single break. When this flag is present and the hard break character is immediately followed by another
hard break character having a different character code, then the two breaks are combined into one. is
is useful for allowing CR (carriage return) and LF (line feed) to each cause a line break when occurring

BreakSlug() function 63

in isolation, but recognizing the sequence CR-LF as a single line break. In this case, the kBreakCombine-
Next flag should be applied to the CR character in the hardBreakArray parameter.

e following flags can be combined with hard break characters using logical OR. Each of these inserts
a flag bit into the most significant byte of the character code, but they should all be disregarded when
sorting the array of hard break characters into ascending order. Only the lower 24 bits of the character
code are considered when matching characters in the text.

Value Description

kBreakSameParagraph e hard break begins a new line, but it does not begin a new paragraph.

kBreakCombineNext If the hard break is followed by another hard break having a different
character code, then two breaks are combined into one.

e total number of glyphs that actually fit within the maximum span aer being broken at an allowable
point, plus any glyphs corresponding to trimmed characters or hard break characters at the end of the
line, is written to the glyphCount field of the LineData structure specified by the lineData parameter.
is number does not include any null terminator that may occur at the end of the line. e byte length
of the substring of characters corresponding to the value in the glyphCount field is written to the
fullTextLength field.

e set of excluded characters that can be trimmed at the end of the line is specified by the trimCount
and trimArray parameters. If trimCount is not zero, then the trimArray parameter must point to an
array of Unicode characters having the number of entries specified by trimCount. Values specified in
this array typically include spaces and other characters that do not generate any geometry.

e values written to the firstGlyph and lastGlyph fields of the LineData structure specified by the
lineData parameter correspond to the range of untrimmed glyphs preceding any hard break characters
or a null terminator. Because some glyphs may be excluded from this range, it can contain fewer glyphs
than the number written to the glyphCount field. e range can also be empty if the line contains no
untrimmed glyphs. e horizontal span of the text corresponding to this range of glyphs is written to
the lineSpan field, and the byte length of this portion of the text in the original string is written to the
trimTextLength field.

e value written to the spaceJustify field of the LineData structure is the amount of extra horizontal
advance width that must be added to each space character in order to fully justify the line of text. It is
set equal to the difference between the maxSpan parameter and the span written to the lineSpan field
divided by the number of untrimmed space characters in the line.

If the line of text would constitute the last line in a paragraph, because the line ends with a null
terminator or a hard break character that does not have the kBreakSameParagraph flag set, then the
lineFlags field of the LineData structure contains the kLineParagraphLast flag. Otherwise, the
lineFlags field is set to zero. For the last line in a paragraph, the value written to the spaceJustify field
is always zero.

64 Programming Reference

If a null terminator or hard break character is encountered before the maximum span is reached, then
the text is always broken at that point (before a null terminator, but aer a hard break character).
Otherwise, the text is broken aer the last so break character that was encountered before the
maximum span was reached. If no so break character was encountered, then the text is broken aer
the last character that fits within the maximum span plus any contiguous run of immediately following
characters that are included in the trim array.

If the kLayoutWrapDisable flag is set in the layoutFlags field of the LayoutData structure specified by
the layoutData parameter, then lines of text are allowed to overflow the maximum span. In this case,
lines can be broken only aer hard break characters, and the value of the maxSpan, softBreakCount, and
softBreakArray parameters have no effect (but the softBreakArray parameter must still be a valid
pointer).

Any characters in the original text string designated as control characters by the Unicode standard may
specify so or hard break locations, but are otherwise ignored. ese characters never contribute any
spacing in the slug layout, even if the original font defines nonzero advance widths for them.

BreakSlugEx() function 65

BreakSlugEx() function
e BreakSlugEx() function calculates the partial length of a line of text that fits within a specified
physical horizontal span and optionally breaks the line at an allowable location.

Prototype

void BreakSlugEx(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 int32 fontCount,
 const FontDesc *fontDesc,
 float maxSpan,
 int32 softBreakCount,
 const uint32 *softBreakArray,
 int32 hardBreakCount,
 const uint32 *hardBreakArray,
 int32 trimCount,
 const uint32 *trimArray,
 LineData *lineData);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileStringEx() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of the
fontCount parameter.

maxSpan e maximum physical horizontal span of the text.

softBreakCount e number of so break characters specified by the softBreakArray
parameter.

66 Programming Reference

softBreakArray A pointer to an array of so break characters with softBreakCount entries.
e values in this array are Unicode characters, and they must be sorted in
ascending order. is parameter can nullptr only if the softBreakCount
parameter is 0.

hardBreakCount e number of hard break characters specified by the hardBreakArray
parameter.

hardBreakArray A pointer to an array of hard break characters with hardBreakCount entries.
e values in this array are Unicode characters, and they must be sorted in
ascending order. is parameter can nullptr only if the hardBreakCount
parameter is 0.

trimCount e number of trim characters specified by the trimArray parameter.

trimArray A pointer to an array of trim characters with trimCount entries. e values in
this array are Unicode characters, and they must be sorted in ascending order.
is parameter can nullptr only if the trimCount parameter is 0.

lineData A pointer to a LineData structure to which information about the line of text is
written.

Description
e BreakSlugEx() function is an extended version of the BreakSlug() function capable of handling
multiple fonts through the mapping mechanism described in Section 4.6. A call to the BreakSlug()
function is internally forwarded to the BreakSlugEx() function with the fontCount parameter set to 1
and the fontDesc parameter set to the address of a single FontDesc structure containing the font header
with default scale and offset.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileStringEx() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e value of the
fontCount parameter and the entries of the array specified by the fontDesc parameter must be exactly
the same values that were passed to the fontCount and fontDesc parameters of the CompileStringEx()
function.

e remaining parameters passed to the BreakSlugEx() function have the same meanings as the
parameters with the same names passed to the BreakSlug() function.

BuildMultiLineText() function 67

BuildMultiLineText() function
e BuildMultiLineText() function generates the vertices and triangles for multiple lines of text.

Prototype

void BuildMultiLineText(const CompiledText *compiledText,
 const FontHeader *fontHeader,
 int32 lineIndex,
 int32 lineCount,
 const LineData *lineDataArray,
 const Point2D& position,
 float maxSpan,
 GeometryBuffer *geometryBuffer,
 PlaceholderBuffer *placeholderBuffer = nullptr,
 Box2D *textBox = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

lineIndex e zero-based index of the first line of text to build.

lineCount e number of lines of text to build.

lineDataArray A pointer to an array of LineData structures containing information about
each line of text. e lines of text to be built correspond to elements indexed
lineIndex through lineIndex + lineCount − 1 in this array.

position e x and y coordinates of the first glyph at the baseline of the first line of
text.

maxSpan e maximum physical horizontal span of the text.

geometryBuffer A pointer to a GeometryBuffer structure containing information about where
the output vertex and triangle data is stored. is parameter can be nullptr,
in which case no vertex and triangle data is generated.

68 Programming Reference

placeholderBuffer A pointer to a PlaceholderBuffer structure containing information about
where the output placeholder data is stored. is parameter can be nullptr,
in which case no placeholder data is generated.

textBox A pointer to a Box2D structure that receives the bounding box containing all
lines of text. is parameter can be nullptr, in which case the bounding box
is not returned.

Description
e BuildMultiLineText() function generates all of the vertex data and triangle data needed to render
multiple lines of text. is data is written in a format that is meant to be consumed directly by the GPU.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileString() function. e pointer passed to the fontHeader parameter must be the
same that was passed to the fontHeader parameter of the CompileString() function.

Before the BuildMultiLineText() function can be called, the BreakMultiLineText() and Count-
MultiLineText() functions must be called for the same compiled string to determine the locations
where lines break and the maximum amount of storage that the BuildMultiLineText() function will
need to write its data. e compiled string must be exactly the same for all three functions to ensure that
the correct amount of storage can be allocated and that the data generated by the BuildMulti-
LineText() function stays within the calculated limits.

e lineIndex parameter specifies the zero-based index of the first line of text to build, and the
lineCount parameter specifies the number of lines to build. e lineDataArray parameter must point
to an array of LineData structures containing at least lineIndex + lineCount elements. ese would
normally have been generated by a previous call to the BreakMultiLineText() function.

e position parameter specifies the x and y coordinates of the le side of the first glyph at the baseline
of the first line of text. is is oen (0, 0) when the transformation matrix applied externally by the
application includes an object-space position.

e maxSpan parameter specifies the maximum physical horizontal span for all lines of text, and it’s value
should match the value previously passed to the BreakMultiLineText() function to generate the array
of LineData structures. If the text alignment is kAlignmentRight or kAlignmentCenter, as specified by
the textAlignment field of the LayoutData structure, then the maxSpan parameter is used to determine
the proper horizontal position at which each line of text is rendered. If embedded format directives are
enabled, then the alignment can be changed within a line of text, but the new alignment does not take
effect until the next line is started.

e geometryBuffer parameter points to a GeometryBuffer structure containing the addresses of the
storage into which vertex and triangle data are written. ese addresses are typically in memory that is
visible to the GPU. Upon return from the BuildMultiLineText() function, the GeometryBuffer
structure is updated so that the vertexData and triangleData fields point to the next element past the
end of the data that was written. e vertexIndex field is advanced to one greater than the largest vertex

BuildMultiLineText() function 69

index written. is updated information allows for multiple strings of text having the same shaders to
be built in the same vertex buffer and drawn with a single rendering command.

If placeholders are being used, the placeholderBuffer parameter points to a PlaceholderBuffer
structure containing the address of the storage into which placeholder information is written. Upon
return from the BuildMultiLineText() function, the PlaceholderBuffer structure is updated so that
the placeholderData field points to the next element past the data that was written in the same manner
that pointers are updated in the GeometryBuffer structure.

e actual numbers of vertices and triangles generated by the BuildMultiLineText() function should
be determined by examining the pointers in the GeometryBuffer structure upon return and subtracting
the original values of those pointers. Likewise, the actual number of placeholders generated by the
BuildMultiLineText() function should be determined by examining the pointer in the
PlaceholderBuffer structure and subtracting the original value. e resulting differences can be less
than the maximum values returned by the CountMultiLineText() function. e code in Listing 4.5
demonstrates how the final vertex and triangle counts should be calculated.

If the textBox parameter is not nullptr, then the bounding box containing all lines of text is written to
the location it points to. In the case that no vertices were generated (e.g., the text string consists only of
spaces), the maximum extent of the box in both the x and y directions will be less than the minimum
extent, and this condition should be interpreted as an empty box.

Any characters in the original text string designated as control characters by the Unicode standard do
not generate any output. ese characters never contribute any spacing in the slug layout, even if the
original font defines nonzero advance widths for them, and they never cause any vertices or triangles to
be generated.

e vertex positions generated by the BuildMultiLineText() function have coordinates in slug space,
where the x axis points to the right and the y axis points downward. (Note that the y axis in slug space
points in the opposite direction of the y axis in em space.) e triangles generated by the BuildMulti-
LineText() function are wound counterclockwise in slug space.

When a new line is started, it is placed at a distance below the previous line given by the product of the
font size and leading, as specified by the fontSize and textLeading fields of the LayoutData structure.
If paragraph attributes are enabled and the new line is the first line in a new paragraph, then the leading
is increased by the paragraphSpacing field of the LayoutData structure. If embedded format directives
are enabled, the leading and paragraph spacing values can be changed within a line of text, but the new
line spacing takes effect when the next line or paragraph is started.

70 Programming Reference

BuildMultiLineTextEx() function
e BuildMultiLineTextEx() function generates the vertices and triangles for multiple lines of text.

Prototype

void BuildMultiLineTextEx(const CompiledText *compiledText,
 int32 fontCount,
 const FontDesc *fontDesc,
 int32 lineIndex,
 int32 lineCount,
 const LineData *lineDataArray,
 const Point2D& position,
 float maxSpan,
 GeometryBuffer *geometryBuffer,
 PlaceholderBuffer *placeholderBuffer = nullptr,
 Box2D *textBox = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileStringEx() function.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of
the fontCount parameter.

lineIndex e zero-based index of the first line of text to build.

lineCount e number of lines of text to build.

lineDataArray A pointer to an array of LineData structures containing information about
each line of text. e lines of text to be built correspond to elements indexed
lineIndex through lineIndex + lineCount − 1 in this array.

position e x and y coordinates of the first glyph at the baseline of the first line of
text.

maxSpan e maximum physical horizontal span of the text.

BuildMultiLineTextEx() function 71

geometryBuffer A pointer to an array of GeometryBuffer structures containing information
about where the output vertex and triangle data is stored for each font. e
number of elements in this array must be equal to the value of the fontCount
parameter. is parameter can be nullptr, in which case no vertex and
triangle data is generated.

placeholderBuffer A pointer to a PlaceholderBuffer structure containing information about
where the output placeholder data is stored. is parameter can be nullptr,
in which case no placeholder data is generated.

textBox A pointer to a Box2D structure that receives the bounding box containing all
lines of text. is parameter can be nullptr, in which case the bounding box
is not returned.

Description
e BuildMultiLineTextEx() function is an extended version of the BuildMultiLineText() function
capable of handling multiple fonts through the mapping mechanism described in Section 4.6. A call to
the BuildMultiLineText() function is internally forwarded to the BuildMultiLineTextEx() function
with the fontCount parameter set to 1 and the fontDesc parameter set to the address of a single
FontDesc structure containing the font header with default scale and offset.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileStringEx() function. e value of the fontCount parameter and the entries of the
array specified by the fontDesc parameter must be exactly the same values that were passed to the
fontCount and fontDesc parameters of the CompileStringEx() function.

e remaining parameters passed to the BuildMultiLineTextEx() function have the same meanings as
the parameters with the same names passed to the BuildMultiLineText() function with one exception.
e geometryBuffer parameter must now point to an array of GeometryBuffer structures having one
entry per font. Each GeometryBuffer structure specifies the location where vertex and triangle data is
written for the corresponding font index. Keep in mind that it is possible for no geometry to be generated
for some fonts if they are not used in the portion of the string processed by the BuildMultiLine-
TextEx() function.

72 Programming Reference

BuildIcon() function
e BuildIcon() function generates the vertices and triangles for a single icon.

Prototype

void BuildIcon(const IconData *iconData,
 const Point2D& iconPosition,
 const Matrix2D& iconMatrix,
 const ColorData *colorData,
 uint32 renderFlags,
 GeometryType geometryType,
 GeometryBuffer *geometryBuffer);

Parameters

Parameter Description

iconData A pointer to the IconData structure corresponding to the icon.

iconPosition e x and y coordinates corresponding to the origin in the icon’s local
coordinate system.

iconMatrix e 2×2 transformation matrix to apply to the icon’s local coordinate system.

colorData A pointer to a ColorData structure containing the solid color or gradient
applied to the icon.

renderFlags Flags specifying various render options. ese are the same options described
for the renderFlags parameter of the GetShaderIndices() function.

geometryType e type of geometry used to render the icon. See the description for
information about the various types.

geometryBuffer A pointer to the GeometryBuffer structure containing information about where
the output vertex and triangle data is stored.

Description
e BuildIcon() function generates the vertex data and triangle data needed to render a single icon.
is data is written in a format that is meant to be consumed directly by the GPU.

e iconData parameter must point to an IconData structure returned by the GetIconData() function
or generated by either the ImportIconData() or ImportMulticolorIconData() function specifically for
the icon being rendered.

BuildIcon() function 73

e iconPosition and iconMatrix parameters specify a translation and 2×2 matrix that are applied to
the icon’s vertex coordinates. e position is added aer vertices have been transformed by the matrix.
e matrix must be invertible, but it is not required to be orthogonal. e local coordinate system for
an icon is the same as that for a glyph. e x axis points to the right, and the y axis points up.

e following values are the geometry types that can be specified for the geometryType parameter.

Value Description

kGeometryQuads e icon is rendered with a single quad composed of 4 vertices and
2 triangles.

kGeometryPolygons e icon is rendered with a tight bounding polygon having between
3 and 8 vertices and between 1 and 6 triangles.

kGeometryRectangles e icon is rendered with 3 vertices making up exactly one triangle
with the expectation that the window-aligned bounding rectangle
will be filled. In this case, no data is written to the triangleData
array specified in the GeometryBuffer structure, so it can be
nullptr. is type can be used only when rectangle primitives are
available, such as provided by the VK_NV_fill_rectangle and
GL_NV_fill_rectangle extensions.

e geometryBuffer parameter points to a GeometryBuffer structure containing the addresses of the
storage into which vertex and triangle data are written. ese addresses are typically in memory that is
visible to the GPU, and they must be large enough to hold the maximum numbers of vertices and
triangles that could be generated for the specified value of the geometryType parameter. Upon return
from the BuildIcon() function, the GeometryBuffer structure is updated so that the vertexData and
triangleData fields point to the next element past the end of the data that was written. e vertexIndex
field is advanced to one greater than the largest vertex index written. is updated information allows
for multiple icons having the same shaders to be built in the same vertex buffer and drawn with a single
rendering command.

If the geometryType parameter is kGeometryQuads, then the triangleData field of the GeometryBuffer
structure may be set to nullptr. In this case, no triangle data is generated, and four vertices are
generated in an order that allows the icon to be rendered as a triangle strip.

74 Programming Reference

BuildPicture() function
e BuildPicture() function generates the vertices and triangles for an entire picture.

Prototype

void BuildPicture(const AlbumHeader *albumHeader,
 int32 pictureIndex,
 const Point2D& picturePosition,
 const Vector2D& pictureScale,
 GeometryType geometryType,
 GeometryBuffer *geometryBuffer);

Parameters

Parameter Description

albumHeader A pointer to the AlbumHeader structure retrieved with the GetAlbumHeader()
function for a particular .slug file.

pictureIndex e index of the picture within the album. is index must be between 0 and
one less than the count given by the pictureCount field of the AlbumHeader
structure, inclusive.

picturePosition e x and y coordinates corresponding to the origin in the picture’s local
coordinate system.

pictureScale e x and y scale to apply to the picture’s vertex coordinates.

geometryType e type of geometry used to render the picture. See the description for
information about the various types.

geometryBuffer A pointer to the GeometryBuffer structure containing information about where
the output vertex and triangle data is stored.

Description
e BuildPicture() function generates the vertex data and triangle data needed to render an entire
picture. is data is written in a format that is meant to be consumed directly by the GPU.

e picturePosition and pictureScale parameters specify a translation and scale that are applied to
the picture’s vertex coordinates. e local coordinate system for a picture is the same as that for a glyph
or icon. e x axis points to the right, and the y axis points up.

BuildPicture() function 75

e following values are the geometry types that can be specified for the geometryType parameter.

Value Description

kGeometryQuads e components of the picture are each rendered with a single quad
composed of 4 vertices and 2 triangles.

kGeometryPolygons e components of the picture are each rendered with a tight
bounding polygon having between 3 and 8 vertices and between 1
and 6 triangles.

kGeometryRectangles e components of the picture are each rendered with 3 vertices
making up exactly one triangle with the expectation that the
window-aligned bounding rectangle will be filled. is type can be
used only when rectangle primitives are available, such as provided
by the VK_NV_fill_rectangle and GL_NV_fill_rectangle
extensions.

e geometryBuffer parameter points to a GeometryBuffer structure containing the addresses of the
storage into which vertex and triangle data are written. ese addresses are typically in memory that is
visible to the GPU, and they must be large enough to hold the maximum numbers of vertices and
triangles that could be generated for the specified value of the geometryType parameter. Upon return
from the BuildPicture() function, the GeometryBuffer structure is updated so that the vertexData
and triangleData fields point to the next element past the end of the data that was written. e
vertexIndex field is advanced to one greater than the largest vertex index written. is updated
information allows for multiple pictures having the same shaders to be built in the same vertex buffer
and drawn with a single rendering command.

76 Programming Reference

BuildSlug() function
e BuildSlug() function generates the vertices and triangles for a single line of text, or “slug”.

Prototype

void BuildSlug(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 const FontHeader *fontHeader,
 const Point2D& position,
 GeometryBuffer *geometryBuffer,
 PlaceholderBuffer *placeholderBuffer = nullptr,
 Box2D *textBox = nullptr,
 Point2D *exitPosition = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

position e x and y coordinates of the first glyph at the baseline.

geometryBuffer A pointer to the GeometryBuffer structure containing information about
where the output vertex and triangle data is stored. is parameter can be
nullptr, in which case no vertex and triangle data is generated.

placeholderBuffer A pointer to a PlaceholderBuffer structure containing information about
where the output placeholder data is stored. is parameter can be nullptr,
in which case no placeholder data is generated.

textBox A pointer to a Box2D structure that receives the bounding box of the entire
line of text. is parameter can be nullptr, in which case the bounding box is
not returned.

BuildSlug() function 77

exitPosition A pointer to a Point2D structure that receives the x and y coordinates of the
new drawing position aer it has been advanced past the final glyph. is
parameter can be nullptr, in which case the updated position is not
returned.

Description
e BuildSlug() function generates all of the vertex data and triangle data needed to render a single
line of text, or “slug”. is data is written in a format that is meant to be consumed directly by the GPU.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileString() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e pointer passed to
the fontHeader parameter must be the same that was passed to the fontHeader parameter of the
CompileString() function.

e glyphRange parameter optionally points to a GlyphRange structure specifying the numbers of the
first and last glyphs to be built.

Before the BuildSlug() function can be called, the CountSlug() function must be called for the same
compiled string to determine the maximum amount of storage that the BuildSlug() function will need
to write its data. e compiled string must be exactly the same for both functions to ensure that the
correct amount of storage can be allocated and that the data generated by the BuildSlug() function
stays within the calculated limits.

e position parameter specifies the x and y coordinates of the le side of the first glyph at the baseline.
is is oen (0, 0) when the transformation matrix applied externally by the application includes an
object-space position.

e geometryBuffer parameter points to a GeometryBuffer structure containing the addresses of the
storage into which vertex and triangle data are written. ese addresses are typically in memory that is
visible to the GPU. Upon return from the BuildSlug() function, the GeometryBuffer structure is
updated so that the vertexData and triangleData fields point to the next element past the end of the
data that was written. e vertexIndex field is advanced to one greater than the largest vertex index
written. is updated information allows for multiple lines of text having the same shaders to be built
in the same vertex buffer and drawn with a single rendering command.

If placeholders are being used, the placeholderBuffer parameter points to a PlaceholderBuffer
structure containing the address of the storage into which placeholder information is written. Upon
return from the BuildSlug() function, the PlaceholderBuffer structure is updated so that the
placeholderData field points to the next element past the data that was written in the same manner
that pointers are updated in the GeometryBuffer structure.

e actual numbers of vertices and triangles generated by the BuildSlug() function should be
determined by examining the pointers in the GeometryBuffer structure upon return and subtracting
the original values of those pointers. Likewise, the actual number of placeholders generated by the

78 Programming Reference

BuildSlug() function should be determined by examining the pointer in the PlaceholderBuffer
structure and subtracting the original value. e resulting differences can be less than the maximum
values returned by the CountSlug() function. e code in Listing 4.4 demonstrates how the final vertex
and triangle counts should be calculated.

If the textBox parameter is not nullptr, then the bounding box of the entire slug is written to the
location it points to. In the case that no vertices were generated (e.g., the text string consists only of
spaces), the maximum extent of the box in both the x and y directions will be less than the minimum
extent, and this condition should be interpreted as an empty box.

If the exitPosition parameter is not nullptr, then the final drawing position is written to it. e final
drawing position corresponds to the position aer the advance width for the final glyph has been applied
along with any tracking that may be in effect.

Any characters in the original text string designated as control characters by the Unicode standard do
not generate any output. ese characters never contribute any spacing in the slug layout, even if the
original font defines nonzero advance widths for them, and they never cause any vertices or triangles to
be generated.

e vertex positions generated by the BuildSlug() function have coordinates in slug space, where the
x axis points to the right and the y axis points downward. (Note that the y axis in slug space points in
the opposite direction of the y axis in em space.) e triangles generated by the BuildSlug() function
are wound counterclockwise in slug space.

BuildSlugEx() function 79

BuildSlugEx() function
e BuildSlugEx() function generates the vertices and triangles for a single line of text, or “slug”.

Prototype

void BuildSlugEx(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 int32 fontCount,
 const FontDesc *fontDesc,
 const Point2D& position,
 GeometryBuffer *geometryBuffer,
 PlaceholderBuffer *placeholderBuffer = nullptr,
 Box2D *textBox = nullptr,
 Point2D *exitPosition = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileStringEx() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of
the fontCount parameter.

position e x and y coordinates of the first glyph at the baseline.

geometryBuffer A pointer to an array of GeometryBuffer structures containing information
about where the output vertex and triangle data is stored for each font. e
number of elements in this array must be equal to the value of the fontCount
parameter. is parameter can be nullptr, in which case no vertex and
triangle data is generated.

placeholderBuffer A pointer to a PlaceholderBuffer structure containing information about
where the output placeholder data is stored. is parameter can be nullptr,
in which case no placeholder data is generated.

80 Programming Reference

textBox A pointer to a Box2D structure that receives the bounding box of the entire
line of text. is parameter can be nullptr, in which case the bounding box is
not returned.

exitPosition A pointer to a Point2D structure that receives the x and y coordinates of the
new drawing position aer it has been advanced past the final glyph. is
parameter can be nullptr, in which case the updated position is not
returned.

Description
e BuildSlugEx() function is an extended version of the BuildSlug() function capable of handling
multiple fonts through the mapping mechanism described in Section 4.6. A call to the BuildSlug()
function is internally forwarded to the BuildSlugEx() function with the fontCount parameter set to 1
and the fontDesc parameter set to the address of a single FontDesc structure containing the font header
with default scale and offset.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileStringEx() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e value of the
fontCount parameter and the entries of the array specified by the fontDesc parameter must be exactly
the same values that were passed to the fontCount and fontDesc parameters of the CompileStringEx()
function.

e remaining parameters passed to the BuildSlugEx() function have the same meanings as the
parameters with the same names passed to the BuildSlug() function with one exception. e
geometryBuffer parameter must now point to an array of GeometryBuffer structures having one entry
per font. Each GeometryBuffer structure specifies the location where vertex and triangle data is written
for the corresponding font index. Keep in mind that it is possible for no geometry to be generated for
some fonts if they are not used in the portion of the string processed by the BuildSlugEx() function.

BuildTruncatableSlug() function 81

BuildTruncatableSlug() function
e BuildTruncatableSlug() function builds a line of text, or “slug”, that must fit into a maximum
physical span or be truncated.

Prototype

bool BuildTruncatableSlug(const CompiledText *compiledText,
 const CompiledText *suffixCompiledText,
 const GlyphRange *glyphRange,
 const FontHeader *fontHeader,
 uint32 buildFlags,
 const Point2D& position,
 float maxSpan,
 int32 trimCount,
 const uint32 *trimArray,
 GeometryBuffer *geometryBuffer,
 PlaceholderBuffer *placeholderBuffer = nullptr,
 Box2D *textBox = nullptr,
 Point2D *beginPosition = nullptr,
 Point2D *endPosition = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

suffixCompiledText A pointer to a different CompiledText object containing the suffix text
appended when the primary string does not fit inside the width specified by
the maxSpan parameter.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to
process in the primary string specified by the compiledText parameter. e
glyphRange parameter can be nullptr, in which case all of the glyphs
stored in the CompiledText object are processed.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

buildFlags Various flags that specify building options. See the description for
information about the individual bits.

position e x and y coordinates of the first glyph at the baseline.

82 Programming Reference

maxSpan e maximum physical horizontal span of the text.

trimCount e number of trim characters specified by the trimArray parameter.

trimArray A pointer to an array of trim characters with trimCount entries. e values
in this array are Unicode characters, and they must be sorted in ascending
order. is parameter can nullptr only if the trimCount parameter is 0.

geometryBuffer A pointer to the GeometryBuffer structure containing information about
where the output vertex and triangle data is stored. is parameter can be
nullptr, in which case no vertex and triangle data is generated.

placeholderBuffer A pointer to a PlaceholderBuffer structure containing information about
where the output placeholder data is stored. is parameter can be nullptr,
in which case no placeholder data is generated.

textBox A pointer to a Box2D structure that receives the bounding box of the entire
line of text. is parameter can be nullptr, in which case the bounding box
is not returned.

beginPosition A pointer to a Point2D structure that receives the x and y coordinates of the
initial drawing position aer it has been adjusted for alignment. is
parameter can be nullptr, in which case the beginning position is not
returned.

endPosition A pointer to a Point2D structure that receives the x and y coordinates of the
new drawing position aer it has been advanced past the final glyph. is
parameter can be nullptr, in which case the ending position is not
returned.

Description
e BuildTruncatableSlug() function is a high-level function that builds a line of text, or “slug”, that
is required to fit within a maximum physical span. If the text string does not fit within the span, then it
is truncated aer the largest number of characters possible while still leaving enough space for a
specified suffix string to be appended to it.

e fontCount, fontDesc, and fontMap, and layoutData parameters passed to preceding calls to the
CompileStringEx() function must specify the same information for both the compiledText and
suffixCompiledText parameters.

Before the BuildTruncatableSlug() function is called, the CountSlug() function must be called twice
to determine the maximum possible number of vertices and triangles that could be built. e first call
must specify the same compiled text that is passed to the BuildTruncatableSlug() function for the
compiledText parameter. e second call to the CountSlug() function must specify the same suffix text
that is specified by the suffixCompiledText parameter. e values returned from these two calls to the

BuildTruncatableSlug() function 83

CountSlug() function should be added and used to allocate space for the vertices and triangles
generated by the BuildTruncatableSlug() function.

e fontHeader, position, geometryBuffer, and exitPosition parameters have the same meanings
as they do for the BuildSlug() function.

e maxSpan parameter specifies the maximum physical horizontal span in which the text string must
fit. If the entire string specified by the compiledText parameter fits inside this span, then the entire
string is built, the suffixCompiledText parameter is ignored, and the return value is true. Otherwise,
the physical span needed to build the entire suffix string is subtracted from the value of the maxSpan
parameter, and only the number of characters from the text string fitting into this smaller span are built.
e entire suffix string is then built and appended to the output generated for the truncated text string.
In the case, the return value is false.

e fontHeader parameter passed to preceding calls to the CompileString() function for both the
primary string specified by the compiledText parameter and the suffix string specified by the
suffixCompiledText parameter must refer to the same font.

e following values can be combined (through logical OR) for the buildFlags parameter.

Value Description

kBuildTruncatableAlignment Alignment is applied to the text within the maximum
span as specified by the textAlignment field of the
LayoutData structure.

kBuildTruncatableFirstLine e indent specified by the firstLineIndent field of the
LayoutData structure is applied when the
kBuildTruncatableAlignment flag is specified.

kBuildTruncatableForceSuffix e suffix text is always appended to the main text even if
the main text does not need to be truncated.

84 Programming Reference

BuildTruncatableSlugEx() function
e BuildTruncatableSlugEx() function builds a line of text, or “slug”, that must fit into a maximum
physical span or be truncated.

Prototype

bool BuildTruncatableSlugEx(const CompiledText *compiledText,
 const CompiledText *suffixCompiledText,
 const GlyphRange *glyphRange,
 int32 fontCount,
 const FontDesc *fontDesc,
 uint32 buildFlags,
 const Point2D& position,
 float maxSpan,
 int32 trimCount,
 const uint32 *trimArray,
 GeometryBuffer *geometryBuffer,
 PlaceholderBuffer *placeholderBuffer = nullptr,
 Box2D *textBox = nullptr,
 Point2D *beginPosition = nullptr,
 Point2D *endPosition = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

suffixCompiledText A pointer to a different CompiledText object containing the suffix text
appended when the primary string does not fit inside the width specified by
the maxSpan parameter.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to
process in the primary string specified by the compiledText parameter. e
glyphRange parameter can be nullptr, in which case all of the glyphs
stored in the CompiledText object are processed.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may
be utilized. e number of elements in this array must be equal to the value
of the fontCount parameter.

BuildTruncatableSlugEx() function 85

buildFlags Various flags that specify building options. See the description for
information about the individual bits.

position e x and y coordinates of the first glyph at the baseline.

maxSpan e maximum physical horizontal span of the text.

trimCount e number of trim characters specified by the trimArray parameter.

trimArray A pointer to an array of trim characters with trimCount entries. e values
in this array are Unicode characters, and they must be sorted in ascending
order. is parameter can nullptr only if the trimCount parameter is 0.

geometryBuffer A pointer to the GeometryBuffer structure containing information about
where the output vertex and triangle data is stored. is parameter can be
nullptr, in which case no vertex and triangle data is generated.

placeholderBuffer A pointer to a PlaceholderBuffer structure containing information about
where the output placeholder data is stored. is parameter can be nullptr,
in which case no placeholder data is generated.

textBox A pointer to a Box2D structure that receives the bounding box of the entire
line of text. is parameter can be nullptr, in which case the bounding box
is not returned.

beginPosition A pointer to a Point2D structure that receives the x and y coordinates of the
initial drawing position aer it has been adjusted for alignment. is
parameter can be nullptr, in which case the beginning position is not
returned.

endPosition A pointer to a Point2D structure that receives the x and y coordinates of the
new drawing position aer it has been advanced past the final glyph. is
parameter can be nullptr, in which case the ending position is not
returned.

Description
e BuildTruncatableSlugEx() function is an extended version of the BuildTruncatableSlug()
function capable of handling multiple fonts through the mapping mechanism described in Section 4.6.
A call to the BuildTruncatableSlug() function is internally forwarded to the BuildTruncatable-
SlugEx() function with the fontCount parameter set to 1 and the fontDesc parameter set to the address
of a single FontDesc structure containing the font header with default scale and offset.

e remaining parameters passed to the BuildTruncatableSlugEx() function have the same meanings
as the parameters with the same names passed to the BuildTruncatableSlug() function with one
exception. e geometryBuffer parameter must now point to an array of GeometryBuffer structures

86 Programming Reference

having one entry per font. Each GeometryBuffer structure specifies the location where vertex and
triangle data is written for the corresponding font index. Keep in mind that it is possible for no geometry
to be generated for some fonts if they are not used in the portion of the string processed by the
BuildTruncatableSlugEx() function.

BuildTruncatedMultiLineText() function 87

BuildTruncatedMultiLineText() function
e BuildTruncatedMultiLineText() function generates the vertices and triangles for multiple lines
of text, and the last line of text may be truncated to make space for a suffix string.

Prototype

void BuildTruncatedMultiLineText(const CompiledText *compiledText,
 const CompiledText *suffixCompiledText,
 const FontHeader *fontHeader,
 int32 lineIndex,
 int32 lineCount,
 const LineData *lineDataArray,
 const Point2D& position,
 float maxSpan,
 int32 trimCount,
 const uint32 *trimArray,
 GeometryBuffer *geometryBuffer,
 PlaceholderBuffer *placeholderBuffer = nullptr,
 Box2D *textBox = nullptr,
 float lastLineSpan = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

suffixCompiledText A pointer to a different CompiledText object containing the suffix text
appended to the last line of text.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

lineIndex e zero-based index of the first line of text to build.

lineCount e number of lines of text to build.

lineDataArray A pointer to an array of LineData structures containing information about
each line of text. e lines of text to be built correspond to elements
indexed lineIndex through lineIndex + lineCount − 1 in this array.

position e x and y coordinates of the first glyph at the baseline of the first line of
text.

88 Programming Reference

maxSpan e maximum physical horizontal span of the text.

trimCount e number of trim characters specified by the trimArray parameter.

trimArray A pointer to an array of trim characters with trimCount entries. e values
in this array are Unicode characters, and they must be sorted in ascending
order. is parameter can nullptr only if the trimCount parameter is 0.

geometryBuffer A pointer to a GeometryBuffer structure containing information about
where the output vertex and triangle data is stored. is parameter can be
nullptr, in which case no vertex and triangle data is generated.

placeholderBuffer A pointer to a PlaceholderBuffer structure containing information about
where the output placeholder data is stored. is parameter can be nullptr,
in which case no placeholder data is generated.

textBox A pointer to a Box2D structure that receives the bounding box containing all
lines of text. is parameter can be nullptr, in which case the bounding
box is not returned.

lastLineSpan A pointer to a floating-point variable that receives the span of the last line of
text, in absolute units, aer it has possibly been truncated. is span always
includes space occupied by the suffix string. is parameter can be nullptr,
in which case the span is not returned.

Description
e BuildTruncatedMultiLineText() function performs the same operation as the BuildMultiLine-
Text() function, except the last line of text may be truncated to allow a suffix string to be appended.
e suffix string is always built because it is intended to indicate that there are more lines of text that
could not fit in a display area.

e fontCount, fontDesc, and fontMap, and layoutData parameters passed to preceding calls to the
CompileStringEx() function must specify the same information for both the compiledText and
suffixCompiledText parameters.

Before the BuildTruncatedMultiLineText() function is called, the CountMultiLineText() function
must be called to determine the maximum possible number of vertices and triangles that could be built
for the primary text, and the CountSlug() function must be called to determine the maximum numbers
for the suffix string. e values returned from these two functions should be added and used to allocate
space for the vertices and triangles generated by the BuildTruncatedMultiLineText() function.

e suffixCompiledText, trimCount, and trimArray parameters have the same meaning as they do for
the BuildTruncatableSlug() function. e remaining parameters have the same meaning as they do
for the BuildMultiLineText() function.

BuildTruncatedMultiLineTextEx() function 89

BuildTruncatedMultiLineTextEx() function
e BuildTruncatedMultiLineTextEx() function generates the vertices and triangles for multiple lines
of text, and the last line of text may be truncated to make space for a suffix string.

Prototype

void BuildTruncatedMultiLineTextEx(const CompiledText *compiledText,
 const CompiledText *suffixCompiledText,
 int32 fontCount,
 const FontDesc *fontDesc,
 int32 lineIndex,
 int32 lineCount,
 const LineData *lineDataArray,
 const Point2D& position,
 float maxSpan,
 int32 trimCount,
 const uint32 *trimArray,
 GeometryBuffer *geometryBuffer,
 PlaceholderBuffer *placeholderBuffer = nullptr,
 Box2D *textBox = nullptr,
 float *lastLineSpan = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

suffixCompiledText A pointer to a different CompiledText object containing the suffix text
appended to the last line of text.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may
be utilized. e number of elements in this array must be equal to the value
of the fontCount parameter.

lineIndex e zero-based index of the first line of text to build.

lineCount e number of lines of text to build.

90 Programming Reference

lineDataArray A pointer to an array of LineData structures containing information about
each line of text. e lines of text to be built correspond to elements
indexed lineIndex through lineIndex + lineCount − 1 in this array.

position e x and y coordinates of the first glyph at the baseline of the first line of
text.

maxSpan e maximum physical horizontal span of the text.

trimCount e number of trim characters specified by the trimArray parameter.

trimArray A pointer to an array of trim characters with trimCount entries. e values
in this array are Unicode characters, and they must be sorted in ascending
order. is parameter can nullptr only if the trimCount parameter is 0.

geometryBuffer A pointer to a GeometryBuffer structure containing information about
where the output vertex and triangle data is stored. is parameter can be
nullptr, in which case no vertex and triangle data is generated.

placeholderBuffer A pointer to a PlaceholderBuffer structure containing information about
where the output placeholder data is stored. is parameter can be nullptr,
in which case no placeholder data is generated.

textBox A pointer to a Box2D structure that receives the bounding box containing all
lines of text. is parameter can be nullptr, in which case the bounding
box is not returned.

lastLineSpan A pointer to a floating-point variable that receives the span of the last line of
text, in absolute units, aer it has possibly been truncated. is span always
includes space occupied by the suffix string. is parameter can be nullptr,
in which case the span is not returned.

Description
e BuildTruncatedMultiLineTextEx() function is an extended version of the BuildTruncated-
MultiLineText() function capable of handling multiple fonts through the mapping mechanism
described in Section 4.6. A call to the BuildTruncatedMultiLineText() function is internally
forwarded to the BuildTruncatedMultiLineTextEx() function with the fontCount parameter set to 1
and the fontDesc parameter set to the address of a single FontDesc structure containing the font header
with default scale and offset.

e suffixCompiledText, trimCount, and trimArray parameters have the same meaning as they do for
the BuildTruncatableSlugEx() function. e remaining parameters have the same meaning as they do
for the BuildMultiLineTextEx() function.

CalculateGlyphCount() function 91

CalculateGlyphCount() function
e CalculateGlyphCount() function calculates the partial lengths of a line of compiled text that fit
within specified physical horizontal spans.

Prototype

void CalculateGlyphCount(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 const FontHeader *fontHeader,
 int32 spanCount,
 const float *spanArray,
 int32 trimCount,
 const uint32 *trimArray,
 int32 *glyphCountArray,
 float *glyphSpanArray = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

spanCount e number of spans stored in the array specified by the spanArray parameter.
is must be at least one.

spanArray A pointer to an array of horizontal spans containing spanCount entries. e
values in this array must be sorted in increasing order.

trimCount e number of trim characters specified by the trimArray parameter.

trimArray A pointer to an array of trim characters with trimCount entries. e values in
this array are Unicode characters, and they must be sorted in ascending order.
is parameter can nullptr only if the trimCount parameter is 0.

glyphCountArray A pointer to an array having spanCount entries to which the glyph counts are
written. is parameter cannot be nullptr.

92 Programming Reference

glyphSpanArray A pointer to an array having spanCount entries to which the actual spans are
written. is parameter can be nullptr, in which case the spans not returned.

Description
e CalculateGlyphCount() function determines how many characters of a text string can fit within a
given set of horizontal spans. e spanCount parameter specifies the number of horizontal spans to
consider, and the spanArray parameter points to the array of span values.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileString() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e pointer passed to
the fontHeader parameter must be the same that was passed to the fontHeader parameter of the
CompileString() function.

e number of glyphs that fit within each horizontal span is returned in the array specified by the
glyphCountArray parameter. If the glyphSpanArray parameter is not nullptr, then it receives the
actual width of the glyphs fitting into each span, which is no greater than the corresponding span
supplied by the spanArray parameter.

If the trimCount parameter is not zero, then the trimArray parameter must point to an array of Unicode
characters having the number of entries specified by trimCount. Values specified in this array typically
include spaces and other characters that do not generate any geometry. Glyphs corresponding to these
characters are not counted when they occur at the end of the sequence of glyphs that fit within each
span, and they do not contribute to the actual spans returned through the glyphSpanArray parameter.

Any characters in the original text string designated as control characters by the Unicode standard do
not contribute to the text length. ese characters never contribute any spacing in the slug layout, even
if the original font defines nonzero advance widths for them.

CalculateGlyphCountEx() function 93

CalculateGlyphCountEx() function
e CalculateGlyphCountEx() function calculates the partial lengths of a line of compiled text that fit
within specified physical horizontal spans.

Prototype

void CalculateGlyphCountEx(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 int32 fontCount,
 const FontDesc *fontDesc,
 int32 spanCount,
 const float *spanArray,
 int32 trimCount,
 const uint32 *trimArray,
 int32 *glyphCountArray,
 float *glyphSpanArray = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileStringEx() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of the
fontCount parameter.

spanCount e number of spans stored in the array specified by the spanArray parameter.
is must be at least one.

spanArray A pointer to an array of horizontal spans containing spanCount entries. e
values in this array must be sorted in increasing order.

trimCount e number of trim characters specified by the trimArray parameter.

94 Programming Reference

trimArray A pointer to an array of trim characters with trimCount entries. e values in
this array are Unicode characters, and they must be sorted in ascending order.
is parameter can nullptr only if the trimCount parameter is 0.

glyphCountArray A pointer to an array having spanCount entries to which the glyph counts are
written. is parameter cannot be nullptr.

glyphSpanArray A pointer to an array having spanCount entries to which the actual spans are
written. is parameter can be nullptr, in which case the spans not returned.

Description
e CalculateGlyphCountEx() function is an extended version of the CalculateGlyphCount()
function capable of handling multiple fonts through the mapping mechanism described in Section 4.6.
A call to the CalculateGlyphCount() function is internally forwarded to the CalculateGlyph-
CountEx() function with the fontCount parameter set to 1 and the fontDesc parameter set to the
address of a single FontDesc structure containing the font header with default scale and offset.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileStringEx() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e value of the
fontCount parameter and the entries of the array specified by the fontDesc parameter must be exactly
the same values that were passed to the fontCount and fontDesc parameters of the CompileStringEx()
function.

e remaining parameters passed to the CalculateGlyphCountEx() function have the same meanings
as the parameters with the same names passed to the CalculateGlyphCount() function.

Color4U class 95

Color4U class
e Color4U class encapsulates an RGBA color with four 8-bit unsigned integer components.

Fields

Field Description

uint8
red

e red component of the color, in gamma space.

uint8
green

e green component of the color, in gamma space.

uint8
blue

e blue component of the color, in gamma space.

uint8
alpha

e alpha component of the color, in linear space.

Description
e Color4U class is a four-byte structure that stores the red, green, blue, and alpha components of a
color as 8-bit unsigned integers. In almost all cases, the three color components are expected to have
values in gamma space. e exception is the Color4U field in the Vertex4U structure, which always stores
its color components in linear space.

An object of type ColorRGBA can be assigned to an object of type Color4U. In this case, gamma correction
is automatically applied to the red, green, and blue components during the conversion from floating-
point to unsigned integer values.

An object of type Color4U can be explicitly converted to an object of type ColorRGBA. In this case, the
red, green, and blue components are linearized during the conversion from unsigned integer to floating-
point values.

96 Programming Reference

ColorData structure
e ColorData structure contains information about colors and gradients.

Fields

Field Description

ColorRGBA
color[2]

e text colors. If gradients are not used, then the first color is assigned to
all glyph vertices, and the second color is ignored. If the gradientFlag
field is true, then a gradient is applied using both colors. e alpha value
should be 1.0 for fully opaque text.

float
gradient[2]

e y coordinates at which the gradient color equals the corresponding
entry in the color field. Each y coordinate is the em-space distance above
the baseline. Negative values are allowed. e two y coordinates must not
be equal. is field is used only if the gradientFlag field is true.

bool
gradientFlag

A flag indicating whether the color gradient is used. If this is false, then
text is rendered using only color[0] as a solid color. If this is true, then
text is rendered with a gradient determined by color[0] and color[1] at
the y coordinates given by gradient[0] and gradient[1].

Description
e ColorData structure contains information about colors and gradients applied to a line of text. is
structure is used in the LayoutData structure for the text color and effect color.

If the gradientFlag field is false, then the second entry in the color array and both entries in the
gradient array are ignored. In this case, only the first entry in the color array is used, and it represents
the solid color with which text is rendered.

If the gradientFlag field is true, then the two entries of the color array correspond to colors attained
at the em-space y coordinates specified by the corresponding two entries of the gradient array.

ColorRGBA class 97

ColorRGBA class
e ColorRGBA class encapsulates an RGBA color with four 32-bit floating-point components.

Fields

Field Description

float
red

e red component of the color, in linear space.

float
green

e green component of the color, in linear space.

float
blue

e blue component of the color, in linear space.

float
alpha

e alpha component of the color, in linear space.

Description
e ColorRGBA class is a 16-byte structure that stores the red, green, blue, and alpha components of a
color as 32-bit floating-point numbers. e three color components are always expected to have values
in linear space without gamma correction.

If an integer value is assigned to any of the red, green, or blue components, then it is interpreted as a
gamma-corrected value in the range [0, 255], and it is automatically converted to the range [0.0, 1.0]
and linearized to remove gamma correction before being stored in the ColorRGBA object. If an integer
value is assigned to the alpha component then it is interpreted as a linear value and converted from the
range [0, 255] to the range [0.0, 1.0]. When a floating-point value is assigned to any component, no
conversion of any kind is applied.

An object of type Color4U can be assigned to an object of type ColorRGBA. In this case, the red, green,
and blue components are automatically linearized to remove gamma correction during the conversion
from unsigned integer to floating-point values.

98 Programming Reference

CompiledCharacter structure
e CompiledCharacter structure holds information about one character in a compiled text string.

Fields

Field Description

int32
stringLocation

e byte offset at which this character begins in the original string.

uint32
unicodeValue

e full 32-bit Unicode value of this character. is is zero for the null
terminator.

uint8
unicodeLength

e number of bytes occupied in the original string by the UTF-8
encoding of this character.

uint8
unicodeFlags

Flags corresponding to various Unicode properties for this character.

uint8
slugFlags

Flags used internally for this character.

Description
When a text string is processed by the CompileString() function, an array of CompiledCharacter
structures is stored in the returned CompiledText structure. Each entry of that array corresponds to a
single Unicode character in the original string and contains the information described above.

e array of compiled characters in the CompiledText structure always ends with a special null
terminator entry for which the unicodeValue field has the value zero. e value of the stringLocation
field for the null terminator is the length of the original text string excluding the terminator.

e unicodeFlags field contains the flags that would be returned by the GetUnicodeCharacterFlags()
function for the value in the unicodeValue field.

CompiledGlyph structure 99

CompiledGlyph structure
e CompiledGlyph structure holds information about one glyph in a compiled text string.

Fields

Field Description

uint32
glyphIndex

e low 24 bits contain the index of the glyph within the font to which it
belongs. e high 8 bits contain flags used internally. e null terminator
has the value kTerminatorGlyph.

int32
characterNumber

e index of the first compiled character to which this glyph corresponds.

uint8
characterCount

e number of compiled characters to which this glyph corresponds.

uint8
fontIndex

e index of the font that was chosen for this glyph.

uint8
layoutIndex

e index of the LayoutData used by this glyph.

uint8
runIndex

e index of the RunData used by this glyph.

Description
When a text string is processed by the CompileString() function, an array of CompiledGlyph structures
is stored in the returned CompiledText structure. Each entry of that array corresponds to a single glyph
in the final output and contains the information described above. Glyphs are generated aer font
selection, sequence replacement, and alternate substitution have been applied, and thus the final number
of glyphs may be different than the original number of characters in the text string.

e array of CompiledGlyph structures in the CompiledText structure always ends with a special null
terminator entry for which the glyphIndex field has the value kTerminatorGlyph.

100 Programming Reference

CompiledText and CompiledStorage structures
e CompiledText structure stores information about the characters in a text string and the glyphs
generated when that string was processed. e CompiledStorage structure is an extension of the
CompiledText structure that includes the maximum storage space for the compiled information.

Fields

Field Description

int32
characterCount

e number of compiled characters in the compiledCharacter array,
excluding the null terminator.

int32
glyphCount

e number of compiled glyphs in the compiledGlyph array, excluding
the null terminator.

int32
layoutCount

e number of different LayoutData structures in the layoutData array.

int32
runCount

e number of different RunData structures in the runData array.

CompiledCharacter
compiledCharacter[]

An array of CompiledCharacter structures corresponding to the text
string. e number of entries is the value of the characterCount field
plus one more containing the null terminator.

CompiledGlyph
compiledGlyph[]

An array of CompiledGlyph structures corresponding to the glyphs
generated by the characters in the text string. e number of entries is the
value of the glyphCount field plus one more containing the null
terminator.

LayoutData
layoutData[]

An array of LayoutData structures used by the text string. e number of
entries is given by the layoutCount field. e layoutIndex field of the
CompiledGlyph structure indexes into this array.

RunData
runData[]

An array of RunData structures used by the text string. e number of
entries is given by the runCount field. e runIndex field of the
CompiledGlyph structure indexes into this array.

Description
e CompiledText structure serves as a header describing the contents of storage space for information
generated by the CompileString() function. e CompiledStorage structure is composed of a
CompiledText structure followed by the maximum storage space allowed for a single string of text. e
compiled text includes information about the Unicode characters in the original string, the glyphs that
were generated for those characters, the various layout states used by the text string, and each directional

CompiledText and CompiledStorage structures 101

run that occurred in the text string. Once this information has been compiled, it can be consumed by
many of the Slug library functions.

When the library is used in a single-threaded context, there is normally no need for the application to
allocate its own CompiledStorage structures because the library contains one that can be used internally.
A pointer to the internal CompiledText structure is returned by the CompileString() function when
the application does not specify its own storage in the final parameter.

If library functions are called from multiple threads, then the application must ensure that a different
CompiledStorage structure is used by each thread so that the library is safely reentrant. e storage
allocated by the application is passed as the final parameter of the CompileString() function. Due to
the somewhat large size of CompiledStorage structures, they should not be allocated on the stack, but
only on the heap or as a static part of the program binary.

102 Programming Reference

CompileString() function
e CompileString() function processes a text string and compiles a list of glyphs.

Prototype

const CompiledText *CompileString(const FontHeader *fontHeader,
 const LayoutData *layoutData,
 const char *text,
 int32 maxLength = −1,
 LayoutData *exitLayoutData = nullptr,
 CompiledStorage *compiledStorage = nullptr);

Parameters

Parameter Description

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

layoutData A pointer to a LayoutData structure containing the initial text layout state that
is applied.

text A pointer to a text string. e characters must be encoded as UTF-8. If the
maxLength parameter is −1, then this string must be null terminated.

maxLength e maximum number of bytes to be processed in the string. If this is set to −1,
then the string must be null terminated, and the entire string is processed.

exitLayoutData A pointer to a LayoutData structure to which the updated text layout state is
written. It is safe to specify the same pointer for both the layoutData and
exitLayoutData parameters. is parameter can be nullptr, in which case the
updated state is not returned.

compiledStorage A pointer to a CompiledStorage structure that will be used for temporary
storage. If this is nullptr, then internal storage shared among all callers is used.
See the CompiledStorage structure for information about reentrancy.

Description
e CompileString() function processes the UTF-8 encoded text string specified by the text and
maxLength parameters.

e text parameter should point to a string of characters encoded as UTF-8. e maxLength parameter
specifies the maximum number of bytes of this string to be processed, which is not necessarily the

CompileString() function 103

number of characters. If a null terminator is encountered before the number of bytes specified by
maxLength has been processed, then processing stops at the null terminator. If maxLength is set to −1,
then the string must be null terminated, and the entire string is processed.

If the exitLayoutData parameter is not nullptr, then the updated layout state is written to the location
it points to. It is safe to specify the same pointer for both the layoutData and exitLayoutData
parameters. e kLayoutFormatDirectives bit must be set in the layoutFlags field of the LayoutData
structure specified by the layoutData parameter for any changes to be made to the layout state by
embedded format directives as the text is processed.

If the compiledStorage parameter is not nullptr, then the return value is a pointer to the CompiledText
base object of the specified storage. Otherwise, if the compiledStorage parameter is nullptr, then the
return value is a pointer to the library’s internal shared storage.

104 Programming Reference

CompileStringEx() function
e CompileStringEx() function processes a text string and compiles a list of glyphs.

Prototype

const CompiledText *CompileStringEx(int32 fontCount,
 const FontDesc *fontDesc,
 const FontMap *fontMap,
 const LayoutData *layoutData,
 const char *text,
 int32 maxLength = −1,
 LayoutData *exitLayoutData = nullptr,
 CompiledStorage *compiledStorage = nullptr);

Parameters

Parameter Description

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of the
fontCount parameter.

fontMap A pointer to a FontMap structure defining the relationships among font types
and the source fonts specified in the font header array. is can be nullptr, in
which case only the font with index 0 is used.

layoutData A pointer to a LayoutData structure containing the initial text layout state that
is applied.

text A pointer to a text string. e characters must be encoded as UTF-8. If the
maxLength parameter is −1, then this string must be null terminated.

maxLength e maximum number of bytes to be processed in the string. If this is set to −1,
then the string must be null terminated, and the entire string is processed.

exitLayoutData A pointer to a LayoutData structure to which the updated text layout state is
written. It is safe to specify the same pointer for both the layoutData and
exitLayoutData parameters. is parameter can be nullptr, in which case the
updated state is not returned.

CompileStringEx() function 105

compiledStorage A pointer to a CompiledStorage structure that will be used for temporary
storage. If this is nullptr, then internal storage shared among all callers is used.
See the CompiledStorage structure for information about reentrancy.

Description
e CompileStringEx() function is an extended version of the CompileString() function capable of
handling multiple fonts through the mapping mechanism described in Section 4.6. A call to the
CompileString() function is internally forwarded to the CompileStringEx() function with the
fontCount parameter set to 1, the fontDesc parameter set to the address of a single FontDesc structure
containing the font header with default scale and offset, and the fontMap parameter set to nullptr.

e fontCount and fontDesc parameters specify the master font list containing the full set of fonts that
can be used with the text string. e fontMap parameter specifies the mapping from generic font types
to the actual fonts as described for the FontMap structure.

e remaining parameters passed to the CompileStringEx() function have the same meanings as the
parameters with the same names passed to the CompileString() function.

106 Programming Reference

CountFill() function
e CountFill() function calculates the numbers of vertices and triangles that will be generated by the
CreateFill() function for a single filled path and determines how much space will be used in the curve
and band textures.

Prototype

void CountFill(const FillData *fillData,
 int32 curveCount,
 const QuadraticBezier2D *curveArray,
 const Integer2D& curveTextureSize,
 Integer2D *curveWriteLocation,
 const Integer2D& bandTextureSize,
 Integer2D *bandWriteLocation,
 int32 *vertexCount,
 int32 *triangleCount,
 const CreateData *createData = nullptr,
 FillWorkspace *workspace = nullptr);

Parameters

Parameter Description

fillData A pointer to a FillData structure containing the fill state that is applied.

curveCount e number of Bézier curves in the filled path. is must be no greater than
kMaxFillCurveCount, which is defined to be 8192.

curveArray A pointer to an array of quadratic Bézier curves containing as many entries
as specified by the curveCount parameter. is array must specify a closed
loop, and the first control point of each curve must be exactly equal to the
last control point of the preceding curve.

curveTextureSize e x and y dimensions of the curve texture, in texels, to which control
point data will be written by the CreateFill() function. If the y size is
greater than one, then the x size must be 4096.

curveWriteLocation On entry, the initial texture coordinates at which control point data will be
written in the curve texture. On exit, the new coordinates following the data
that will be written.

CountFill() function 107

bandTextureSize e x and y dimensions of the band texture, in texels, to which band data
will be written by the CreateFill() function. If the y size is greater than
one, then the x size must be 4096.

bandWriteLocation On entry, the initial texture coordinates at which band data will be written
in the band texture. On exit, the new coordinates following the data that
will be written.

vertexCount A pointer to the location that receives the number of vertices that will be
generated by the CreateFill() function.

triangleCount A pointer to the location that receives the number of triangles that will be
generated by the CreateFill() function.

createData A pointer to a CreateData structure specifying optimization parameters for
the filled path. If this is nullptr, then the default parameters are applied.

workspace A pointer to a FillWorkspace structure that will be used for temporary
storage. If this is nullptr, then an internal workspace shared among all
callers is used. See the FillWorkspace structure for information about
reentrancy.

Description
e CountFill() function calculates the numbers of vertices and triangles that will be generated and
the amount of space in the curve and band textures that will be used by the CreateFill() function for
a specific fill data, create data, and set of Bézier curves. e CountFill() function must be called before
vertex and triangle data can be generated so that the appropriate amount of storage space can be
allocated.

e appearance of the interior of the filled path is determined by the data supplied in the FillData
structure specified by the fillData parameter. is structure can specify a solid fill color or a gradient.
e SetDefaultFillData() function should be used to initialize the FillData structure to its default
values before setting individual fields.

e path itself is defined by an array of quadratic Bézier curves given by the curveCount and curveArray
parameters. e set of curves must form a closed loop, and the first control point of each curve must be
exactly equal to the last control point of the preceding curve. e last curve in the array is considered to
be the predecessor of the first curve in the array, and thus the first control point of the first curve must
be exactly equal to the last control point of the last curve.

e curveTextureSize and bandTextureSize parameters specify the x and y dimensions of the curve
texture and band texture. e curveWriteLocation and bandWriteLocation parameters specify the
coordinates in those textures at which new data will be written by the CreateFill() function. ese
should be set to (0, 0) initially and should simply retain their output values for any subsequent calls to
the CountFill() or CountStroke() functions. When the CountFill() function returns, the write

108 Programming Reference

locations are updated to reflect the amount of space that will be required. e actual texture storage
passed to the CreateFill() function must have a height at least one greater than the y coordinate of the
final write location for each of the curve and band textures.

e numbers of vertices and triangles are stored in the locations pointed to by the vertexCount and
triangleCount parameters. e vertex count and triangle count are always returned, and the
corresponding parameters cannot be nullptr. is information should be used to allocate vertex buffers
of the proper size before calling the CreateFill() function to fill them with data.

e createData parameter points to a CreateData structure containing optimization settings for the
internal data used for rendering. If this parameter is nullptr, then the default values listed in the
description of the CreateData structure are applied.

CountIcon() function 109

CountIcon() function
e CountIcon() function calculates the maximum numbers of vertices and triangles that will be
generated by the BuildIcon() function for a single icon.

Prototype

int32 CountIcon(const IconData *iconData,
 GeometryType geometryType,
 int32 *vertexCount,
 int32 *triangleCount);

Parameters

Parameter Description

iconData A pointer to the IconData structure corresponding to the icon.

geometryType e type of geometry that will be used to render the icon. See the description
for information about the various types.

vertexCount A pointer to the location that receives the total number of vertices that will be
generated by the BuildIcon() function.

triangleCount A pointer to the location that receives the total number of triangles that will be
generated by the BuildIcon() function.

Description
e CountIcon() function calculates the maximum numbers of vertices and triangles that will be
generated by the BuildIcon() function for a specific icon. e CountIcon() function must be called
before vertex and triangle data can be generated so that the appropriate amount of storage space can be
allocated.

e iconData parameter must point to an IconData structure returned by the GetIconData() function
or generated by either the ImportIconData() or ImportMulticolorIconData() function specifically for
the icon being rendered.

e maximum number of vertices and maximum number of triangles are stored in the locations pointed
to by the vertexCount and triangleCount parameters. e vertex count and triangle count are always
returned, and the corresponding parameters cannot be nullptr. is information should be used to
allocate vertex buffers of the proper size before calling the BuildIcon() function to fill them with data.

110 Programming Reference

e following values are the geometry types that can be specified for the geometryType parameter.

Value Description

kGeometryQuads e icon is rendered with a single quad composed of 4 vertices and
2 triangles.

kGeometryPolygons e icon is rendered with a tight bounding polygon having between
3 and 8 vertices and between 1 and 6 triangles.

kGeometryRectangles e icon is rendered with 3 vertices making up exactly one triangle
with the expectation that the window-aligned bounding rectangle
will be filled. is type can be used only when rectangle primitives
are available, such as provided by the VK_NV_fill_rectangle and
GL_NV_fill_rectangle extensions.

CountMultiLineText() function 111

CountMultiLineText() function
e CountMultiLineText() function calculates the maximum numbers of vertices and triangles that
will be generated by the BuildMultiLineText() function for multiple lines of text.

Prototype

int32 CountMultiLineText(const CompiledText *compiledText,
 const FontHeader *fontHeader,
 int32 lineIndex,
 int32 lineCount,
 const LineData *lineDataArray,
 int32 *vertexCount,
 int32 *triangleCount,
 int32 *placeholderCount = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

lineIndex e zero-based index of the first line of text to count.

lineCount e number of lines of text to count.

lineDataArray A pointer to an array of LineData structures containing information about
each line of text. e lines of text to be built correspond to elements indexed
lineIndex through lineIndex + lineCount − 1 in this array.

vertexCount A pointer to the location that receives the maximum number of vertices that
will be generated by the BuildMultiLineText() function.

triangleCount A pointer to the location that receives the maximum number of triangles that
will be generated by the BuildMultiLineText() function.

placeholderCount A pointer to the location that receives the number of placeholders that will be
generated by the BuildMultiLineText() function. is parameter can be
nullptr, in which case the placeholder count is not returned.

112 Programming Reference

Description
e CountMultiLineText() function calculates the maximum numbers of vertices and triangles that
will be generated by the BuildMultiLineText() function for a specific font, layout state, and text string.
e CountMultiLineText() function must be called before vertex and triangle data can be generated so
that the appropriate amount of storage space can be allocated.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileString() function. e pointer passed to the fontHeader parameter must be the
same that was passed to the fontHeader parameter of the CompileString() function.

e lineIndex parameter specifies the zero-based index of the first line of text to count, and the
lineCount parameter specifies the number of lines to count. e lineDataArray parameter must point
to an array of LineData structures containing at least lineIndex + lineCount elements. ese would
normally have been generated by a previous call to the BreakMultiLineText() function.

If the lineIndex parameter is not zero and embedded format directives are enabled, then it is the caller’s
responsibility to ensure that the LayoutData structure specified by the layoutData parameter has been
updated to match the correct state for the first line of text. is can be accomplished by calling the
UpdateLayoutData() function with a maxLength parameter given by the fullTextLength field of
lineDataArray[lineIndex − 1]. is layout state will normally be passed to the BuildMultiLine-
Text() function as well, so the UpdateLayoutData() function would typically be called once to generate
a layout state that is passed to both functions.

e maximum number of vertices and maximum number of triangles are stored in the locations pointed
to by the vertexCount and triangleCount parameters. e vertex count and triangle count are always
returned, and the corresponding parameters cannot be nullptr. is information should be used to
allocate vertex buffers of the proper size before calling the BuildMultiLineText() function to fill them
with data. e BuildMultiLineText() function may end up generating fewer than the maximum
numbers of vertices and triangles returned by the CountMultiLineText() function depending on
various factors.

Note: If the value returned in the vertexCount parameter is greater than 65535, then the text is
too large to be rendered with the 16-bit vertex indices stored in the Triangle structure. In this
case, the 32-bit vertex indices provided by the Triangle32 structure must be used instead.

If the placeholderCount parameter is not nullptr, then the number of placeholders is stored in the
location that it points to. is information should be used to allocate an array of PlaceholderData
structures of the proper size before calling the BuildSlug() function with a placeholderBuffer
parameter that is not nullptr.

e value returned by the CountMultiLineText() function is the number of individual glyphs generated
for the text string, which can be different from the number of characters. e glyph count includes
glyphs that do not have any geometry, such as the glyph corresponding to the space character. Underline
and strikethrough decorations do not affect the glyph count.

CountMultiLineText() function 113

Any characters in the original text string designated as control characters by the Unicode standard do
not generate any output. ese characters never contribute to the vertex and triangle counts, and they
never cause any geometry to be generated by the BuildMultiLineText() function.

114 Programming Reference

CountMultiLineTextEx() function
e CountMultiLineTextEx() function calculates the maximum numbers of vertices and triangles that
will be generated by the BuildMultiLineTextEx() function for multiple lines of text.

Prototype

int32 CountMultiLineTextEx(const CompiledText *compiledText,
 int32 fontCount,
 const FontDesc *fontDesc,
 int32 lineIndex,
 int32 lineCount,
 const LineData *lineDataArray,
 int32 *vertexCount,
 int32 *triangleCount,
 int32 *placeholderCount = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileStringEx() function.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of the
fontCount parameter.

lineIndex e zero-based index of the first line of text to count.

lineCount e number of lines of text to count.

lineDataArray A pointer to an array of LineData structures containing information about
each line of text. e lines of text to be built correspond to elements indexed
lineIndex through lineIndex + lineCount − 1 in this array.

vertexCount A pointer to an array of values that receives the maximum number of vertices
that will be generated by the BuildMultiLineTextEx() function for each font.
e number of elements in this array must be equal to the value of the
fontCount parameter.

CountMultiLineTextEx() function 115

triangleCount A pointer to an array of values that receives the maximum number of triangles
that will be generated by the BuildMultiLineTextEx() function for each font.
e number of elements in this array must be equal to the value of the
fontCount parameter.

placeholderCount A pointer to the location that receives the number of placeholders that will be
generated by the BuildMultiLineTextEx() function. is parameter can be
nullptr, in which case the placeholder count is not returned.

Description
e CountMultiLineTextEx() function is an extended version of the CountMultiLineText() function
capable of handling multiple fonts through the mapping mechanism described in Section 4.6. A call to
the CountMultiLineText() function is internally forwarded to the CountMultiLineTextEx() function
with the fontCount parameter set to 1 and the fontDesc parameter set to the address of a single
FontDesc structure containing the font header with default scale and offset.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileStringEx() function. e value of the fontCount parameter and the entries of the
array specified by the fontDesc parameter must be exactly the same values that were passed to the
fontCount and fontDesc parameters of the CompileStringEx() function.

e remaining parameters passed to the CountMultiLineTextEx() function have the same meanings as
the parameters with the same names passed to the CountMultiLineText() function with two
exceptions. e vertexCount and triangleCount parameters must now each point to an array of values
having one entry per font. Each entry in these arrays receives the vertex count or triangle count for the
corresponding font index. Keep in mind that it is possible for no geometry to be generated for some
fonts if they are not used in the portion of the string processed by the CountMultiLineTextEx()
function.

116 Programming Reference

CountPicture() function
e CountPicture() function calculates the maximum numbers of vertices and triangles that will be
generated by the BuildPicture() function for an entire picture.

Prototype

int32 CountPicture(const AlbumHeader *albumHeader,
 int32 pictureIndex,
 GeometryType geometryType,
 int32 *vertexCount,
 int32 *triangleCount);

Parameters

Parameter Description

albumHeader A pointer to the AlbumHeader structure retrieved with the GetAlbumHeader()
function for a particular .slug file.

pictureIndex e index of the picture within the album. is index must be between 0 and
one less than the count given by the pictureCount field of the AlbumHeader
structure, inclusive.

geometryType e type of geometry that will be used to render the picture. See the
description for information about the various types.

vertexCount A pointer to the location that receives the total number of vertices that will be
generated by the BuildPicture() function.

triangleCount A pointer to the location that receives the total number of triangles that will be
generated by the BuildPicture() function.

Description
e CountPicture() function calculates the maximum numbers of vertices and triangles that will be
generated by the BuildPicture() function for a specific icon. e CountPicture() function must be
called before vertex and triangle data can be generated so that the appropriate amount of storage space
can be allocated.

e maximum number of vertices and maximum number of triangles are stored in the locations pointed
to by the vertexCount and triangleCount parameters. e vertex count and triangle count are always
returned, and the corresponding parameters cannot be nullptr. is information should be used to

CountPicture() function 117

allocate vertex buffers of the proper size before calling the BuildPicture() function to fill them with
data.

Note: If the value returned in the vertexCount parameter is greater than 65535, then the picture
is too large to be rendered with the 16-bit vertex indices stored in the Triangle structure. In
this case, the 32-bit vertex indices provided by the Triangle32 structure must be used instead.

e following values are the geometry types that can be specified for the geometryType parameter.

Value Description

kGeometryQuads e components of the picture are each rendered with a single quad
composed of 4 vertices and 2 triangles.

kGeometryPolygons e components of the picture are each rendered with a tight
bounding polygon having between 3 and 8 vertices and between 1
and 6 triangles.

kGeometryRectangles e components of the picture are each rendered with 3 vertices
making up exactly one triangle with the expectation that the
window-aligned bounding rectangle will be filled. is type can be
used only when rectangle primitives are available, such as provided
by the VK_NV_fill_rectangle and GL_NV_fill_rectangle
extensions.

118 Programming Reference

CountSlug() function
e CountSlug() function calculates the maximum numbers of vertices and triangles that will be
generated by the BuildSlug() function for a single line of text, or “slug”.

Prototype

int32 CountSlug(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 const FontHeader *fontHeader,
 int32 *vertexCount,
 int32 *triangleCount,
 int32 *placeholderCount = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

vertexCount A pointer to the location that receives the maximum number of vertices that
will be generated by the BuildSlug() function.

triangleCount A pointer to the location that receives the maximum number of triangles that
will be generated by the BuildSlug() function.

placeholderCount A pointer to the location that receives the number of placeholders that will be
generated by the BuildSlug() function. is parameter can be nullptr, in
which case the placeholder count is not returned.

Description
e CountSlug() function calculates the maximum numbers of vertices and triangles that will be
generated by the BuildSlug() function for a specific font, layout state, and text string. e CountSlug()
function must be called before vertex and triangle data can be generated so that the appropriate amount
of storage space can be allocated.

CountSlug() function 119

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileString() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e pointer passed to
the fontHeader parameter must be the same that was passed to the fontHeader parameter of the
CompileString() function.

e maximum number of vertices and maximum number of triangles are stored in the locations pointed
to by the vertexCount and triangleCount parameters. e vertex count and triangle count are always
returned, and the corresponding parameters cannot be nullptr. is information should be used to
allocate vertex buffers of the proper size before calling the BuildSlug() function to fill them with data.
e BuildSlug() function may end up generating fewer than the maximum numbers of vertices and
triangles returned by the CountSlug() function depending on various factors.

Note: If the value returned in the vertexCount parameter is greater than 65535, then the text is
too large to be rendered with the 16-bit vertex indices stored in the Triangle structure. In this
case, the 32-bit vertex indices provided by the Triangle32 structure must be used instead.

If the placeholderCount parameter is not nullptr, then the number of placeholders is stored in the
location that it points to. is information should be used to allocate an array of PlaceholderData
structures of the proper size before calling the BuildSlug() function with a placeholderBuffer
parameter that is not nullptr.

e value returned by the CountSlug() function is the number of individual glyphs generated for the
text string, which can be different from the number of characters. e glyph count includes glyphs that
do not have any geometry, such as the glyph corresponding to the space character. Underline and
strikethrough decorations do not affect the glyph count.

Any characters in the original text string designated as control characters by the Unicode standard do
not generate any output. ese characters never contribute to the vertex and triangle counts, and they
never cause any geometry to be generated by the BuildSlug() function.

120 Programming Reference

CountSlugEx() function
e CountSlugEx() function calculates the maximum numbers of vertices and triangles that will be
generated by the BuildSlugEx() function for a single line of text, or “slug”.

Prototype

int32 CountSlugEx(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 int32 fontCount,
 const FontDesc *fontDesc,
 int32 *vertexCount,
 int32 *triangleCount,
 int32 *placeholderCount = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileStringEx() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of the
fontCount parameter.

vertexCount A pointer to an array of values that receives the maximum number of vertices
that will be generated by the BuildSlugEx() function for each font. e
number of elements in this array must be equal to the value of the fontCount
parameter.

triangleCount A pointer to an array of values that receives the maximum number of triangles
that will be generated by the BuildSlugEx() function for each font. e
number of elements in this array must be equal to the value of the fontCount
parameter.

CountSlugEx() function 121

placeholderCount A pointer to the location that receives the number of placeholders that will be
generated by the BuildSlugEx() function. is parameter can be nullptr, in
which case the placeholder count is not returned.

Description
e CountSlugEx() function is an extended version of the CountSlug() function capable of handling
multiple fonts through the mapping mechanism described in Section 4.6. A call to the CountSlug()
function is internally forwarded to the CountSlugEx() function with the fontCount parameter set to 1
and the fontDesc parameter set to the address of a single FontDesc structure containing the font header
with default scale and offset.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileStringEx() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e value of the
fontCount parameter and the entries of the array specified by the fontDesc parameter must be exactly
the same values that were passed to the fontCount and fontDesc parameters of the CompileStringEx()
function.

e remaining parameters passed to the CountSlugEx() function have the same meanings as the
parameters with the same names passed to the CountSlug() function with two exceptions. e
vertexCount and triangleCount parameters must now each point to an array of values having one
entry per font. Each entry in these arrays receives the vertex count or triangle count for the
corresponding font index. Keep in mind that it is possible for no geometry to be generated for some
fonts if they are not used in the portion of the string processed by the CountSlugEx() function.

122 Programming Reference

CountStroke() function
e CountStroke() function calculates the numbers of vertices and triangles that will be generated by
the CreateStroke() function for a single stroked path and determines how much space will be used in
the curve texture.

Prototype

void CountStroke(const StrokeData *strokeData,
 uint32 strokeFlags,
 int32 curveCount,
 const QuadraticBezier2D *curveArray,
 const Integer2D& curveTextureSize,
 Integer2D *curveWriteLocation,
 int32 *vertexCount,
 int32 *triangleCount,
 StrokeWorkspace *workspace = nullptr);

Parameters

Parameter Description

strokeData A pointer to a StrokeData structure containing the stroke state that is
applied.

strokeFlags Flags specifying properties of the stroked path. See the description for
information about the particular values.

curveCount e number of Bézier curves in the stroke. is must be no greater than
kMaxStrokeCurveCount, which is defined to be 8192.

curveArray A pointer to an array of quadratic Bézier curves containing as many entries
as specified by the curveCount parameter. For all but the first curve in the
array, the first control point of each curve must be exactly equal to the last
control point of the preceding curve.

curveTextureSize e x and y dimensions of the curve texture, in texels, to which control
point data will be written by the CreateStroke() function. If the y size is
greater than one, then the x size must be 4096.

curveWriteLocation On entry, the initial texture coordinates at which control point data will be
written in the curve texture. On exit, the new coordinates following the data
that will be written.

CountStroke() function 123

vertexCount A pointer to the location that receives the maximum number of vertices
that will be generated by the CreateStroke() function.

triangleCount A pointer to the location that receives the maximum number of triangles
that will be generated by the CreateStroke() function.

workspace A pointer to a StrokeWorkspace structure that will be used for temporary
storage. If this is nullptr, then an internal workspace shared among all
callers is used. See the StrokeWorkspace structure for information about
reentrancy.

Description
e CountStroke() function calculates the numbers of vertices and triangles that will be generated and
the amount of space in the curve texture that will be used by the CreateStroke() function for a specific
stroke data, stroke flags, and set of Bézier curves. e CountStroke() function must be called before
vertex and triangle data can be generated so that the appropriate amount of storage space can be
allocated.

e appearance of the stroked path is determined by the data supplied in the StrokeData structure
specified by the strokeData parameter and the value of the strokeFlags parameter. e StrokeData
structure contains information about the stroke width, the stroke color, the cap style, the join style, and
dashing.

e path itself is defined by an array of quadratic Bézier curves given by the curveCount and curveArray
parameters. e set of curves must form a closed loop, and the first control point of each curve must be
exactly equal to the last control point of the preceding curve. e last curve in the array is considered to
be the predecessor of the first curve in the array, and thus the first control point of the first curve must
be exactly equal to the last control point of the last curve.

e curveTextureSize parameter specifies the x and y dimensions of the curve texture. e
curveWriteLocation parameter specifies the coordinates in the curve texture at which new data will be
written by the CreateStroke() function. is should be set to (0, 0) initially and should simply retain
its output values for any subsequent calls to the CountStroke() or CountFill() functions. When the
CountStroke() function returns, the write location is updated to reflect the amount of space that will
be required. e actual texture storage passed to the CreateStroke() function must have a height at
least one greater than the y coordinate of the final write location for the curve texture.

e numbers of vertices and triangles are stored in the locations pointed to by the vertexCount and
triangleCount parameters. e vertex count and triangle count are always returned, and the
corresponding parameters cannot be nullptr. is information should be used to allocate vertex buffers
of the proper size before calling the CreateStroke() function to fill them with data.

124 Programming Reference

CreateData structure
e CreateData structure specifies optimization parameters used when creating a filled path with the
CreateFill() function.

Fields

Field Description

int32
maxBandCount

e maximum number of horizontal and vertical bands created for a
filled path. is must be at least one and no more than
kMaxFillBandCount, which is defined to be 32.

int32
maxVertexCount

e maximum number of vertices that may be used to form the bounding
polygon for a filled path. To indicate that an optimal bounding polygon
should be created, this must be in the range 4–6. To indicate that a filled
path should always be rendered with a simple bounding box, this should
be set to zero.

float
interiorEdgeFactor

e cost factor used when considering the lengths of interior edges while
searching for the optimal bounding polygon. Ignored if the
maxVertexCount field is zero.

Description
e CreateData structure specifies optimization parameters used when creating a filled path with the
CreateFill() function.

e default CreateData structure, used when nullptr is passed to the CreateFill() function, contains
the following values.

Field Default Value

maxBandCount 16

maxVertexCount 0

interiorEdgeFactor 1.0

CreateFill() function 125

CreateFill() function
e CreateFill() function generates the vertices and triangles for a single filled path.

Prototype

void CreateFill(const FillData *strokeData,
 int32 curveCount,
 const QuadraticBezier2D *curveArray,
 TextureBuffer *curveTextureBuffer,
 TextureBuffer *bandTextureBuffer,
 GeometryBuffer *geometryBuffer,
 const CreateData *createData = nullptr,
 FillWorkspace *workspace = nullptr);

Parameters

Parameter Description

fillData A pointer to a FillData structure containing the fill state that is applied.

curveCount e number of Bézier curves in the filled path. is must be no greater
than kMaxFillCurveCount, which is defined to be 8192.

curveArray A pointer to an array of quadratic Bézier curves containing as many
entries as specified by the curveCount parameter. is array must specify a
closed loop, and the first control point of each curve must be exactly equal
to the last control point of the preceding curve.

curveTextureBuffer A pointer to a TextureBuffer structure describing the curve texture map.

bandTextureBuffer A pointer to a TextureBuffer structure describing the band texture map.

geometryBuffer A pointer to the GeometryBuffer structure containing information about
where the output vertex and triangle data is stored.

createData A pointer to a CreateData structure specifying optimization parameters
for the filled path. If this is nullptr, then the default parameters are
applied.

workspace A pointer to a FillWorkspace structure that will be used for temporary
storage. If this is nullptr, then an internal workspace shared among all
callers is used. See the FillWorkspace structure for information about
reentrancy.

126 Programming Reference

Description
e CreateFill() function generates all of the internal data needed by Slug to render an arbitrary filled
path. is function generates vertices, triangles, control points, and band data that are stored in vertex
buffers and texture maps supplied by the application. is data is written in a format that is meant to be
consumed directly by the GPU, and it can immediately be used for rendering. Multiple filled and stroked
paths can be accumulated in the same output buffers and rendered as a single unit.

Before the CreateFill() function can be called, the CountFill() function must be called to determine
the amount of storage that the CreateFill() function will need to write its data. e fill data, create
data, and path must be exactly the same for both functions to ensure that the correct amount of storage
can be allocated and that the data generated by the CreateFill() function stays within the calculated
limits. For both functions, the fillData and createData parameters must point to FillData and
CreateData structures containing identical information, the curveCount parameters must be equal, and
the curveArray parameters must point to identical paths.

e appearance of the interior of the filled path is determined by the data supplied in the FillData
structure specified by the fillData parameter. is structure can specify a solid fill color or a gradient.
e SetDefaultFillData() function should be used to initialize the FillData structure to its default
values before setting individual fields.

e path itself is defined by an array of quadratic Bézier curves given by the curveCount and curveArray
parameters. e set of curves must form one or more closed loops stored consecutively. In each loop,
the first control point of each curve must be exactly equal to the last control point of the preceding curve.
e last curve in each loop is considered to be the predecessor of the first curve in the loop, and thus
the first control point of the first curve must be exactly equal to the last control point of the last curve.

e curveTextureBuffer and bandTextureBuffer parameters point to TextureBuffer structures
containing information about the texture maps and the locations where new curve and band data is
written. e fields of the TextureBuffer structures must be initialized with exactly the same values that
were used in previous corresponding calls to the CountFill() function. Upon return from the
CreateFill() function, the write locations for each texture map are updated so they point to the next
place that new data can be written. As with the vertex data, this allows for multiple paths to be stored in
the same texture maps.

e geometryBuffer parameter points to a GeometryBuffer structure containing the addresses of the
storage into which vertex and triangle data is written. ese addresses are typically in memory that is
visible to the GPU. Upon return from the CreateFill() function, the GeometryBuffer structure is
updated so that the vertexData and triangleData fields point to the next element past the end of the
data that was written. e vertexIndex field is advanced to one greater than the largest vertex index
written. is updated information allows for multiple filled and/or stroked paths to be built in the same
vertex buffer and drawn with a single rendering command.

e createData parameter points to a CreateData structure containing optimization settings for the
internal data used for rendering. If this parameter is nullptr, then the default values listed in the
description of the CreateData structure are applied.

CreateStroke() function 127

CreateStroke() function
e CreateStroke() function generates the vertices and triangles for a single stroked path.

Prototype

void CreateStroke(const StrokeData *strokeData,
 uint32 strokeFlags,
 int32 curveCount,
 const QuadraticBezier2D *curveArray,
 TextureBuffer *textureBuffer,
 GeometryBuffer *geometryBuffer,
 StrokeWorkspace *workspace = nullptr);

Parameters

Parameter Description

strokeData A pointer to a StrokeData structure containing the stroke state that is applied.

strokeFlags Flags specifying properties of the stroked path. See the description for
information about the particular values.

curveCount e number of Bézier curves in the stroke. is must be no greater than
kMaxStrokeCurveCount, which is defined to be 8192.

curveArray A pointer to an array of quadratic Bézier curves containing as many entries as
specified by the curveCount parameter. For all but the first curve in the array,
the first control point of each curve must be exactly equal to the last control
point of the preceding curve.

textureBuffer A pointer to a TextureBuffer structure describing the curve texture map.

geometryBuffer A pointer to the GeometryBuffer structure containing information about
where the output vertex and triangle data is stored.

workspace A pointer to a StrokeWorkspace structure that will be used for temporary
storage. If this is nullptr, then an internal workspace shared among all callers
is used. See the StrokeWorkspace structure for information about reentrancy.

Description
e CreateStroke() function generates all of the internal data needed by Slug to render an arbitrary
stroked path. is function generates vertices, triangles, and control points that are stored in vertex
buffers and texture maps supplied by the application. is data is written in a format that is meant to be

128 Programming Reference

consumed directly by the GPU, and it can immediately be used for rendering. Multiple filled and stroked
paths can be accumulated in the same output buffers and rendered as a single unit.

Before the CreateStroke() function can be called, the CountStroke() function must be called to
determine the amount of storage that the CreateStroke() function will need to write its data. e stroke
data, stroke flags, and path must be exactly the same for both functions to ensure that the correct amount
of storage can be allocated and that the data generated by the CreateStroke() function stays within the
calculated limits. For both functions, the strokeData parameters must point to StrokeData structures
containing identical information, the strokeFlags parameters must be equal, the curveCount
parameters must be equal, and the curveArray parameters must point to identical paths.

e appearance of the stroked path is determined by the data supplied in the StrokeData structure
specified by the strokeData parameter and the value of the strokeFlags parameter. e StrokeData
structure contains information about the stroke width, the stroke color, the cap style, the join style, and
dashing.

e following values can be combined (through logical OR) in the strokeFlags parameter.

Value Description

kStrokeClosed If the strokes form a closed path, then the beginning and end of the path
are joined as if the first and last curves occurred consecutively.

kStrokeContours e strokes may contain multiple closed contours. Whenever a closed
subpath is detected, a discontinuity is created, and a new path begins.

e path itself is defined by an array of quadratic Bézier curves given by the curveCount and curveArray
parameters. e set of curves may be open or closed, but in all cases must be continuous. e first control
point of each curve must be exactly equal to the last control point of the preceding curve. If the path is
closed, meaning that the last control point of the last curve is equal to the first control point of the first
curve, then the first and last curves are joined only if the kStrokeClosed flag is specified in the
strokeFlags parameter. If the kStrokeClosed flag is not specified, then caps are applied in the same
way they would be for an open path.

If the kStrokeContours flag is specified, then the path defined by the curveCount and curveArray
parameters may contain multiple closed loops stored consecutively. In each loop, the last control point
must have exactly the same coordinates as the first control point. When this condition is detected, the
next control point starts a new contour.

e curveTextureBuffer parameter points to a TextureBuffer structure containing information about
the texture map and the location where new curve data is written. (Strokes do not generate band data.)
Upon return from the CreateStroke() function, the write location for the texture map is updated so it
points to the next place that new data can be written. As with the vertex data, this allows for multiple
paths to be stored in the same texture map.

CreateStroke() function 129

e geometryBuffer parameter points to a GeometryBuffer structure containing the addresses of the
storage into which vertex and triangle data is written. ese addresses are typically in memory that is
visible to the GPU. Upon return from the CreateStroke() function, the GeometryBuffer structure is
updated so that the vertexData and triangleData fields point to the next element past the end of the
data that was written. e vertexIndex field is advanced to one greater than the largest vertex index
written. is updated information allows for multiple filled and/or stroked paths to be built in the same
vertex buffer and drawn with a single rendering command.

130 Programming Reference

ExtendedGlyphData structure
e ExtendedGlyphData structure contains extended information about a specific glyph.

Fields

Field Description

Vector2D
glyphOffset

An em-space offset that is applied to the glyph. is is used when a glyph
has contours identical to those of another glyph but at a different position.

uint32
caretData

e high 8 bits contain the number of caret positions for the glyph, and the
low 24 bits contain the offset into the font's extended data table where the
positions are stored.

Description
Some glyphs may have extended information stored in an ExtendedGlyphData structure. If a glyph has
extended data, then the extendedData field of the GlyphData structure associated with the glyph is
nonzero. e information in the ExtendedGlyphData structure is used internally.

ExtractBandTexture() function 131

ExtractBandTexture() function
e ExtractBandTexture() function decompresses the band texture stored in a .slug file.

Prototype

void ExtractBandTexture(const SlugFileHeader *fileHeader,
 void *bandTexture);

Parameters

Parameter Description

fileHeader A pointer to the SlugFileHeader structure beginning at the first byte of the
contents of a particular .slug file.

bandTexture A pointer to the location where the decompressed band texture is stored.

Description
e ExtractBandTexture() function decompresses the band texture and stores it in memory at the
location specified by the bandTexture parameter. is memory storage must be allocated by the caller.
e size of the storage is obtained by calling the GetBandTextureStorageSize() function.

Once the curve and band texture data has been extracted, it can be passed to the rendering API to be
used by the Slug shaders. e caller is responsible for releasing the texture storage when it is no longer
needed.

132 Programming Reference

ExtractCurveTexture() function
e ExtractCurveTexture() function decompresses the curve texture stored in a .slug file.

Prototype

void ExtractCurveTexture(const SlugFileHeader *fileHeader,
 void *curveTexture);

Parameters

Parameter Description

fileHeader A pointer to the SlugFileHeader structure beginning at the first byte of the
contents of a particular .slug file.

curveTexture A pointer to the location where the decompressed curve texture is stored.

Description
e ExtractCurveTexture() function decompresses the curve texture and stores it in memory at the
location specified by the curveTexture parameter. is memory storage must be allocated by the caller.
e size of the storage is obtained by calling the GetCurveTextureStorageSize() function.

Once the curve and band texture data has been extracted, it can be passed to the rendering API to be
used by the Slug shaders. e caller is responsible for releasing the texture storage when it is no longer
needed.

ExtractFontTextures() function 133

ExtractFontTextures() function
e ExtractFontTextures() function decompresses the curve texture and band texture data for a font.

Prototype

void ExtractFontTextures(const FontHeader *fontHeader,
 void *curveTexture,
 void *bandTexture);

Parameters

Parameter Description

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

curveTexture A pointer to the location where the decompressed curve texture is stored. If this
is nullptr, then the curve texture is not extracted.

bandTexture A pointer to the location where the decompressed band texture is stored. If this is
nullptr, then the band texture is not extracted.

Description
e ExtractFontTextures() function decompresses the texture data needed to render glyphs
belonging to a specific font and stores them in memory at the locations specified by the curveTexture
and bandTexture parameters. is memory storage must be allocated by the caller. e size of the
storage is determined by using the dimensions of the textures given by the FontHeader structure. e
curveTextureSize and bandTextureSize fields of the FontHeader structure give the texture widths and
heights in texels. Each texel of the curve texture is 8 bytes in size, and each texel of the band texture is 4
bytes in size. e code in Listing 4.1 demonstrates how to calculate the storage sizes.

Once the texture data has been extracted, it can be passed to the rendering API to be used by the Slug
shader. e caller is responsible for releasing the texture storage when it is no longer needed.

134 Programming Reference

FillData structure
e FillData structure controls the options that determine the appearance of a filled path.

Fields

Field Description

ColorRGBA
fillColor

e color of the fill.

FillRuleType
fillRuleType

e fill rule, either kFillRuleNonzero or kFillRuleEvenOdd.

GradientType
gradientType

e type of gradient applied to the fill. See the description for information
about possible values.

Bivector3D
gradientLine

e scaled line corresponding to the direction and extent of a linear
gradient, used when the gradientType field is kGradientLinear.

Point3D
gradientCircle

e center and radius of the circle corresponding to a radial gradient,
used when the gradientType field is kGradientRadial.

ColorRGBA
gradientColor[2]

e two colors used by the gradient. When the filled path is rendered,
these are multiplied by the value of the fillColor field.

Description
e FillData structure controls the options that determine the appearance of a filled path. e fields of
the FillData structure should be initialized to their default values by calling the SetDefaultFillData()
function.

e following values are the gradient types that can be specified in the gradientType field.

Value Description

kGradientNone No gradient is applied.

kGradientLinear e gradient is linear with respect to a scaled line.

kGradientRadial e gradient is radial with respect to a center and radius.

FillWorkspace structure 135

FillWorkspace structure
e FillWorkspace structure is used internally for temporary storage by the library functions that
generate geometry and texture data for solid fills.

Description
e FillWorkspace structure serves as temporary storage space while data is being processed by the
Slug library functions that generate geometry and texture data for solid fills. When the library is used in
a single-threaded context, there is no need to allocate and specify FillWorkspace structures because the
library can use its own internal storage. However, if these library functions are called from multiple
threads, then the application must ensure that a different FillWorkspace structure is specified for each
thread so that the library is safely reentrant.

FillWorkspace structures allocated by the application are passed to Slug library functions that need
them as the last parameter. Due to the large size of the FillWorkspace structures, they should not be
allocated on the stack, but only on the heap or as a static part of the program binary.

136 Programming Reference

FontBoundingBoxData structure
e FontBoundingBoxData structure contains information about the bounding box limits for a font.

Fields

Field Description

Box2D
baseBoundingBox

e font-wide union of all em-space bounding boxes for base glyphs,
which excludes combining marks.

Box2D
markBoundingBox

e font-wide union of all em-space bounding boxes for glyphs that
are combining marks. If a font does not contain any combining
marks, then all coordinates for this box are zero.

Description
When the GetFontKeyData() function is called with a key parameter of kFontKeyBoundingBox, the
return value is a pointer to a FontBoundingBoxData structure.

For these bounding boxes, whether a glyph is considered to be a combining mark depends only on
whether the original font contained attachment data for the glyph and may not reflect whether the
corresponding character has the kCharacterCombiningMark property.

FontClassData structure 137

FontClassData structure
e FontClassData structure contains information about the weight class and width class for a font.

Fields

Field Description

uint32
weightClass

e weight class of the font, in the range 1 to 1000.

uint32
widthClass

e width class of the font, in the range 1 to 9.

Description
When the GetFontKeyData() function is called with a key parameter of kFontKeyClass, the return value
is a pointer to a FontClassData structure.

e values in the FontClassData structure are taken from the 'OS/2' table in the original font. In the
unlikely case that the original font did not contain an 'OS/2' table, the values in the FontClassData
structure will be set to zero.

138 Programming Reference

FontDecorationData structure
e FontDecorationData structure contains information about the underline and strikethrough
decorations for a font.

Fields

Field Description

float
decorationSize

e thickness of the decoration stroke, in em units.

float
decorationPosition

e em-space y position of the bottom edge of the decoration stroke.

uint16
dataLocation[2]

e coordinates in the font’s band texture at which data for the
decoration geometry begins.

Description
When the GetFontKeyData() function is called with a key parameter of kFontKeyUnderline or
kFontKeyStrikethrough, the return value is a pointer to a FontDecorationData structure.

FontDesc structure 139

FontDesc structure
e FontDesc structure contains information about a single font referenced by a font map.

Fields

Field Description

const FontHeader
*fontHeader

A pointer to the FontHeader structure associated with the font,
retrieved with the GetFontHeader() function.

float
fontScale

A scale value applied to the font. is scales all glyphs by a fixed
amount, effectively multiplying the overall font size. e default
value is 1.0 applies no scale.

float
fontOffset

An offset value applied to the font, in em units. is shis all glyphs
vertically by a fixed distance, where positive values offset upward.
e size of the em is the product of the font size and the value of the
fontScale field. e default value of 0.0 applies no offset.

Description
A FontDesc structure contains information about a single font referenced by a font map.

140 Programming Reference

FontHeader structure
e FontHeader structure contains general information about a font.

Fields

Field Description

int32
fontKeyDataCount

e number of entries in the key data table.

int32
fontKeyDataOffset

e offset to the key data table.

int32
pageCount

e total number of 256-entry pages covered by the range of code
points included in the font. Not every page must contain glyph
mappings.

int32
pageIndexOffset

e offset to the page index table. e page index table contains
pageCount signed 16-bit entries.
An entry of −1 in the table indicates that a page contains no glyph
mappings.

int32
glyphIndexOffset

e offset to the glyph index table. ere are 256 entries for each
page that contains glyph mappings, and each entry is a 32-bit
integer.

int32
glyphCount

e total number of unique glyphs in the font.

int32
glyphDataOffset[2]

e offsets to the tables of GlyphData structures.
e first offset is always valid, and it corresponds to the table of
GlyphData structures for ordinary glyphs.
e second offset is valid only when variants of each glyph are
available for special effects such as outlining. If there are no variants,
then the second offset is zero.

int32
contourDataOffset

e offset to the contour data table. e location of the contour data
for a particular glyph within this table is given by the contourData
member of the GraphicData structure.
is offset is zero if contour data is not available.

FontHeader structure 141

int32
decomposeDataOffset

e offset to the decompose data table. e location of the
decompose data for a particular glyph within this table is given by
the decomposeData member of the GlyphData structure.
is offset is zero if no glyphs in the font have decompose data.

int32
colorLayerDataOffset

e offset to the color layer data table. e location of the color layer
data for a particular glyph within this table is given by the
colorLayerData member of the GlyphData structure.
is offset is zero if color layer data is not available.

int32
baseAnchorDataOffset

e offset to the combining base anchor data table. e location of
the base anchor data for a particular glyph within this table is given
by the baseAnchorData member of the GlyphData structure.
is offset is zero if base anchor data is not available.

int32
markAttachDataOffset

e offset to the combining mark attach data table. e location of
the mark attach data for a particular glyph within this table is given
by the markAttachData member of the GlyphData structure.
is offset is zero if mark attach data is not available.

int32
kernDataOffset[2]

e offset to the kerning data table. e first entry is for horizontal
layout, and the second entry is for vertical layout. e location of the
kerning data for a particular glyph within this table is given by the
kernData member of the GlyphData structure.
is offset is zero if kerning data is not available.

int32
sequenceDataOffset

e offset to the sequence data table. e location of the sequence
data for a particular glyph within this table is given by the
sequenceData member of the GlyphData structure.
is offset is zero if sequence data is not available.

int32
alternateDataOffset

e offset to the alternate data table. e location of the alternate
data for a particular glyph within this table is given by the
alternateData member of the GlyphData structure.
is offset is zero if alternate data is not available.

int32
caretPositionDataOffset

e offset to the caret data table. e location of the caret data for a
particular glyph within this table is given by the caretData member
of the GlyphData structure.
is offset is zero if no glyphs in the font have caret position data.

142 Programming Reference

Description
e FontHeader structure contains information about the rendering characteristics and layout
capabilities of a font. Most of the fields are used internally by the Slug library functions that accept a font
header or an array of FontDesc structures. A pointer to a FontHeader structure can be obtained from
the raw .slug file data by calling the GetFontHeader() function.

FontHeightData structure 143

FontHeightData structure
e FontHeightData structure contains information about the cap height and ex height for a font.

Fields

Field Description

float
fontCapHeight

e cap height for the font, in em units. is represents the typical
distance from the baseline to the tops of the capital roman letters.

float
fontExHeight

e ex height for the font, in em units. is represents the typical
distance from the baseline to the tops of lowercase roman letters,
disregarding ascenders.

Description
When the GetFontKeyData() function is called with a key parameter of kFontKeyHeight, the return
value is a pointer to a FontHeightData structure.

e values in the FontHeightData structure are taken from the 'OS/2' table in the original font. In the
unlikely case that the original font did not contain an 'OS/2' table, the cap height is equal to the top of
the bounding box for the uppercase letter H, and the ex height is equal to the top of the bounding box
for the lowercase letter x.

144 Programming Reference

FontMap structure
e FontMap structure contains information that maps each member of a set of font types to an array of
source font indices.

Fields

Field Description

int32
fontTypeCount

e number of font types. is must be at least 1.

int32
fontSourceCount

e maximum number of source fonts per font type. is must be at
least 1.

const uint32
*fontTypeArray

A pointer to an array of application-defined font type codes. e
number of elements in this array must be equal to the value of the
fontTypeCount field.

const uint8
*fontIndexTable

A pointer to a two-dimensional array of font indices. e number of
elements in this array must be equal to the product of the values of
the fontTypeCount and fontSourceCount fields.

Description
A FontMap structure is passed to each of the library functions that handles multiple fonts for a single
text string. e mechanism through which type codes are mapped to a set of source fonts is described
in Section 4.6.

e fontTypeCount and fontTypeArray fields define the type codes that determine the current font
style within a text string. e initial type code is specified by the fontType field of the LayoutData
structure. e type code can be changed inside a string by the font() format directive. If the current
type code is ever one that does not appear in the array supplied by the FontMap structure, then it is as if
the first type code in the array was the current type code.

e fontSourceCount field specifies the maximum number of source fonts that can be searched for each
font type. e product of the type count and the source count determines the number of entries in the
table specified by the fontIndexTable field. For each type code, the table must contain an array of
fontSourceCount consecutive entries in the font index table. e same array for the next type code
immediately follows without any padding.

Each entry supplies the index of a font in the array of FontDesc structures passed to a library function.
If a glyph for a particular Unicode character is not found in the first font referenced by the index table,
then the search continues in the second font and so on until the number of sources is exhausted. If an
index greater than or equal to the total number of fonts (as specified to a library function by the
fontCount parameter) is encountered, then the search stops. is allows different numbers of sources

FontMap structure 145

to be specified for different type codes. It is typical to place a value of 255 in the array to signal that there
are no more entries, but this only has to be done if the number of entries is less than fontSourceCount.
If no glyph corresponding to a particular Unicode character is found in any of the source fonts supplied
for the current font type, then the missing glyph belonging to the first font referenced in the index array
for the current font type is used.

146 Programming Reference

FontMathAxisData structure
e FontMathAxisData structure contains information about the math axis height for a font.

Fields

Field Description

float
fontMathAxisHeight

e math axis height for the font, in em units. is represents the
typical distance from the baseline to the vertical center of
mathematical operators and relations.

Description
When the GetFontKeyData() function is called with a key parameter of kFontKeyMathAxis, the return
value is a pointer to a FontMathAxisData structure.

e value in the FontMathAxisData structure is taken from the 'MATH' table in the original font, if that
table is present. Most fonts do not have a 'MATH' table, and in those cases, the math axis height is set to
the vertical center of the equals sign with Unicode value U+003D.

FontMetricsData structure 147

FontMetricsData structure
e FontMetricsData structure contains information about the ascent, descent, and line gap for a font.

Fields

Field Description

float
metricAscent

e font designer’s suggested ascent for the font, in em units. is is
a positive distance above the baseline representing the vertical space
occupied by the font.

float
metricDescent

e font designer’s suggested descent for the font, in em units. is
is a negative distance below the baseline representing the vertical
space occupied by the font.

float
metricLineGap

e font designer’s suggested line gap for the font, in em units. is
is a positive distance added to the difference between the ascent and
descent to calculate a suggested leading.

Description
When the GetFontKeyData() function is called with a key parameter of kFontKeyMetrics or kFontKey-
TypoMetrics, the return value is a pointer to a FontMetricsData structure.

When the kFontKeyMetrics key is specified, the data in the FontMetricsData structure reflects the
values in the 'hhea' table in the original font.

When the kFontKeyTypoMetrics key is specified, the data in the FontMetricsData structure reflects the
values in the 'OS/2' table in the original font. In the unlikely case that the original font did not contain
an 'OS/2' table, the metrics data for the kFontKeyTypoMetrics key is identical to the metrics data for
the kFontKeyMetrics key.

148 Programming Reference

FontOutlineData structure
e FontOutlineData structure contains information about the outline effect for a font.

Fields

Field Description

float
outlineEffectSize

e size by which glyphs are expanded for the outline effect, in em
units.

float
outlineMiterLimit

e miter limit used for the outline effect where curves meet.

OutlineJoinType
outlineJoinType

e join type used when the miter limit is exceeded in the outline
effect.

Description
When the GetFontKeyData() function is called with a key parameter of kFontKeyOutline, the return
value is a pointer to a FontOutlineData structure.

FontPolygonData structure 149

FontPolygonData structure
e FontPolygonData structure contains information about the glyph bounding polygons for a font.

Fields

Field Description

int32
polygonVertexCount

e maximum number of vertices that the bounding polygon for
any glyph can have.

float
polygonEdgeFactor

e cost multiplier applied to the interior edges of a polygon’s
triangulation.

Description
When the GetFontKeyData() function is called with a key parameter of kFontKeyPolygon, the return
value is a pointer to a FontPolygonData structure.

150 Programming Reference

FontScriptData structure
e FontScriptData structure contains information about the transformed-based subscripts or
superscripts for a font.

Fields

Field Description

Vector2D
scriptScale

e scale for script glyphs.

Vector2D
scriptOffset

e offset for script glyphs.

Description
When the GetFontKeyData() function is called with a key parameter of kFontKeySubscript or
kFontKeySuperscript, the return value is a pointer to a FontScriptData structure.

FontSlantData structure 151

FontSlantData structure
e FontSlantData structure contains information about the italic slant angle for a font.

Fields

Field Description

float
slantAngle

e slant angle, in radians, measured clockwise from vertical.

Description
When the GetFontKeyData() function is called with a key parameter of kFontKeySlant, the return value
is a pointer to a FontSlantData structure.

e value in the FontSlantData structure is taken from the 'post' table in the original font. In the
unlikely case that the original font did not contain an 'post' table, the slant angle will be set to zero.

152 Programming Reference

GeometryBuffer structure
e GeometryBuffer structure contains pointers to the storage locations where vertices and triangles
are written.

Fields

Field Description

volatile Vertex4U
*vertexData

A pointer to the location where vertex data with 8-bit unsigned
integer color components is written.

volatile VertexRGBA
*vertexDataFloat

A pointer to the location where vertex data with 32-bit floating-point
color components is written.

volatile Triangle16
*triangleData

A pointer to the location where triangle data with 16-bit indices is
written.

volatile Triangle32
*triangleData32

A pointer to the location where triangle data with 32-bit indices is
written.

uint32
vertexIndex

e index of the first vertex written. e indices stored in the triangle
data begin with this value. is should be set to zero for the first
object (text, icon, fill, or stroke) in any group that will occupy the
same geometry buffer.

VertexType
vertexType

e type of the color components, either kVertex4U or kVertexRGBA.

IndexType
indexType

e type of the vertex indices, either kIndex16 or kIndex32.

Description
e GeometryBuffer structure contains information that tells several functions where to write the vertex
and triangle data that they generate. e vertexData (or vertexDataFloat) and triangleData (or
triangleData32) fields typically point to GPU-visible memory that could be write-combined, so the
pointers are declared volatile to ensure that write-only instructions are generated and that write order
is preserved by the compiler for best performance.

e vertexData and vertexDataFloat fields occupy the same storage location (as a union), and only
one of them should be set. e vertexType field indicates whether vertex colors have 8-bit unsigned
integer components or 32-bit floating-point components. By default, vertexType field is initialized to
kVertex4U.

GeometryBuffer structure 153

Similarly, the triangleData and triangleData32 fields occupy the same storage location (as a union),
and only one of them should be set. e indexType field indicates whether triangle indices are 16-bit or
32-bit unsigned integers. By default, indexType field is initialized to kIndex16.

When a build function returns, the fields of the GeometryBuffer structure have been updated to point
to the end of the data that was written, and the same GeometryBuffer structure can be passed to
additional function calls to append more data to the same vertex buffer.

154 Programming Reference

GetAlbumHeader() function
e GetAlbumHeader() function returns a pointer to the AlbumHeader structure stored in a .slug file.

Prototype

const AlbumHeader *GetAlbumHeader(const SlugFileHeader *fileHeader);

Parameters

Parameter Description

fileHeader A pointer to the SlugFileHeader structure beginning at the first byte of the
contents of a particular .slug file.

Description
Aer a .slug file is loaded into memory, a pointer to its contents should be cast to a pointer to a
SlugFileHeader structure. If the file contains an album, then the GetAlbumHeader() function should
be called to retrieve the AlbumHeader structure contained in the file. e returned pointer is then passed
to other Slug functions that deal with albums.

Note that many data structures inside a .slug file are aligned to 64-byte boundaries to promote good
cache performance. In particular, the IconData structures are 32-byte aligned and are exactly 96 bytes
in size. To benefit from this, the contents of a .slug file must be loaded into a 64-byte aligned region of
memory.

GetBandTextureStorageSize() function 155

GetBandTextureStorageSize() function
e GetBandTextureStorageSize() function returns the decompressed size of the band texture stored
in a .slug file.

Prototype

uint32 GetBandTextureStorageSize(const SlugFileHeader *fileHeader);

Parameters

Parameter Description

fileHeader A pointer to the SlugFileHeader structure beginning at the first byte of the
contents of a particular .slug file.

Description
e GetBandTextureStorageSize() function returns the storage size, in bytes, needed to hold the
decompressed curve texture stored in the file whose contents are specified by the fileHeader parameter.
e curve texture data is decompressed by calling the ExtractBandTexture() function.

156 Programming Reference

GetCompactCompiledStorageSize() function
e GetCompactCompiledStorageSize() function returns the minimum storage size needed to hold a
compiled string of text.

Prototype

uint32 GetCompactCompiledStorageSize(const CompiledText *compiledText);

Parameters

Parameter Description

compiledText A pointer to a CompiledText structure containing a compiled string of text.

Description
e GetCompactCompiledStorageSize() function returns the minimum storage size, in bytes, needed
to hold the compiled string of text stored in the object pointed to by the compiledText parameter. An
application calls the GetCompactCompiledStorageSize() function to determine how many bytes would
be written to memory by the MakeCompactCompiledText() function.

GetCurveTextureStorageSize() function 157

GetCurveTextureStorageSize() function
e GetCurveTextureStorageSize() function returns the decompressed size of the curve texture
stored in a .slug file.

Prototype

uint32 GetCurveTextureStorageSize(const SlugFileHeader *fileHeader);

Parameters

Parameter Description

fileHeader A pointer to the SlugFileHeader structure beginning at the first byte of the
contents of a particular .slug file.

Description
e GetCurveTextureStorageSize() function returns the storage size, in bytes, needed to hold the
decompressed curve texture stored in the file whose contents are specified by the fileHeader parameter.
e curve texture data is decompressed by calling the ExtractCurveTexture() function.

158 Programming Reference

GetFontHeader() function
e GetFontHeader() function returns a pointer to a FontHeader structure stored in a .slug file.

Prototype

const FontHeader *GetFontHeader(const SlugFileHeader *fileHeader,
 int32 index = 0);

Parameters

Parameter Description

fileHeader A pointer to the SlugFileHeader structure beginning at the first byte of the
contents of a particular .slug file.

index e index of the font within the file. is must be less than the count specified in
the resourceCount field of the SlugFileHeader structure.

Description
Aer a .slug file is loaded into memory, a pointer to its contents should be cast to a pointer to a
SlugFileHeader structure. If the file contains fonts, then the GetFontHeader() function should be
called to retrieve the FontHeader structure for a specific font contained in the file. Most .slug files
contain only a single font, so the index parameter can usually be omitted. e returned pointer to a
FontHeader structure is then passed to other Slug functions that deal with fonts.

Note that many data structures inside a .slug file are aligned to 64-byte boundaries to promote good
cache performance. In particular, the GlyphData structures are 64-byte aligned and are exactly 128 bytes
in size. To benefit from this, the contents of a .slug file must be loaded into a 64-byte aligned region of
memory.

GetFontKeyData() function 159

GetFontKeyData() function
e GetFontKeyData() function returns a pointer to the data structure associated with a particular key
value.

Prototype

const void *GetFontKeyData(const FontHeader *fontHeader,
 FontKeyType key);

Parameters

Parameter Description

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader() function
for a particular .slug file.

key e key value corresponding to the type of data to be returned.

Description
A font may contain various short chunks of data that each contain information about a particular aspect
of the font. e GetFontKeyData() function finds the data associated with a given key value and returns
a pointer to a corresponding data structure. e key parameter can be one of the values in the following
table. For a particular key value, the GetFontKeyData() function returns a pointer to the data structure
in the last column, which must be cast from the pointer to void that is returned.

e only types of data that are guaranteed to exist are the metrics and height data associated with the
kFontKeyMetrics, kFontKeyTypoMetrics, and kFontKeyHeight key values. Data associated with other
key values may not be present, and this includes the name of the font. When the requested type of data
is not available, the return value is nullptr.

Key Description Data Structure

kFontKeyName e name of the font. Null-terminated string
encoded in UTF-8.

kFontKeySubname e subname of the font, normally referring to
a typeface such as “Regular”, “Bold”, etc.

Null-terminated string
encoded in UTF-8.

kFontKeyMetrics Data for the ascent, descent, and line gap.
ese are the values specified in the 'hhea'
table in the original font.

FontMetricsData

160 Programming Reference

kFontKeyTypoMetrics Data for the ascent, descent, and line gap.
ese are the values specified in the 'OS/2'
table in the original font, if it existed.
Otherwise, they are the same values returned
for the kFontKeyMetrics key.

FontMetricsData

kFontKeyHeight Data for the cap height and ex height. FontHeightData

kFontKeyMathAxis Data for the math axis height. FontMathAxisData

kFontKeyBoundingBox Data for the bounding box limits. FontBoundingBoxData

kFontKeySubscript Data for the subscript transform. FontScriptData

kFontKeySuperscript Data for the superscript transform. FontScriptData

kFontKeyClass Data for the weight class and width class. FontClassData

kFontKeySlant Data for the italic slant angle. FontSlantData

kFontKeyUnderline Data for the underline position and size. FontDecorationData

kFontKeyStrikethrough Data for the strikethrough position and size. FontDecorationData

kFontKeyPolygon Data for the glyph bounding polygons FontPolygonData

kFontKeyOutline Data for the outline effect. FontOutlineData

GetFragmentShaderSourceCode() function 161

GetFragmentShaderSourceCode() function
e GetFragmentShaderSourceCode() function returns the source code for a glyph fragment shader.

Prototype

int32 GetFragmentShaderSourceCode(uint32 fragmentIndex,
 const char **fragmentCode,
 uint32 shaderFlags = kFragmentShaderDefault);

Parameters

Parameter Description

fragmentIndex e index of the fragment shader returned by the GetShaderIndices() function.

fragmentCode A pointer to the location that receives an array of pointers to the components of
the fragment shader source code. e size of the array must be at least
kMaxFragmentStringCount.

shaderFlags Flags that determine what components of the shader are returned. See the
description for information about the individual bits. e value
kFragmentShaderDefault should be specified unless the shader is being
incorporated into an external material system.

Description
e GetFragmentShaderSourceCode() function constructs an array of pointers to strings that make up
the source code for a glyph fragment shader. e exact components stored in the array are determined
by the rendering options corresponding to the value of the fragmentIndex parameter and the flags
specified by the shaderFlags parameter. Pointers to one or more strings are stored in the array specified
by the fragmentCode parameter. e return value is the number of strings that were stored in the array.

e following values can be combined (through logical OR) in the shaderFlags parameter.

Value Description

kFragmentShaderProlog A prolog component containing type definitions for compatibility
across different shading languages is included in the returned string
array.

kFragmentShaderMain A component containing a main() function and declarations for
interpolants and texture maps is included in the returned string array.

162 Programming Reference

kFragmentShaderDefault All components required for a standalone fragment shader are
included in the returned string array.

e shaderFlags parameter is intended to be used to explicitly omit various shader components when
the Slug shader is to be incorporated into an external material system. e value kFragmentShader-
Default should always be specified for standalone fragment shaders, and it has the effect of including
all components.

If the shaderFlags parameter is not kFragmentShaderDefault, then an external material system must
ensure that certain declarations have been made so that the returned shader code is valid. In particular,
if the kFragmentShaderProlog flag is omitted, then the application must ensure that the type and
function identifiers listed in the following table are available. (ese identifiers have different names in
GLSL and/or the Metal shading language.)

Identifier Description

int2 A signed integer with two components.

int4 A signed integer with four components.

uint4 An unsigned integer with four components.

float2 A floating-point value with two components.

float3 A floating-point value with three components.

float4 A floating-point value with four components.

lerp(x, y, t) A function that returns linear interpolation, x * (1 − t) + y * t.

frac(x) A function that returns the fractional part of x.

asint(x) A function that reinterprets the bits of x as a signed integer.

asuint(x) A function that reinterprets the bits of x as an unsigned integer.

asfloat(x) A function that reinterprets the bits of x as a floating-point value.

saturate(x) A function that clamps x to the range [0,1].

In a GLSL shader under OpenGL ES, the application must also make the following declarations if the
kFragmentShaderProlog flag is omitted. (ese should not be declared for desktop OpenGL.)

GetFragmentShaderSourceCode() function 163

precision highp float;
precision highp int;
precision highp sampler2D;
precision highp usampler2D;

If the kFragmentShaderMain flag is omitted, then the application is responsible for declaring the four
interpolants output by the vertex shader as well as the two texture maps used by the fragment shader,
each described in the following table. In this case, the kVertexShaderMain flag should generally be
omitted when calling the GetVertexShaderSourceCode() function as well.

Resource Description

color e vertex color with four floating-point components. In HLSL and
PSSL, this has the user-defined semantic U_COLOR.

texcoord e vertex texture coordinates with two floating-point components. In
HLSL and PSSL, this has the user-defined semantic U_TEXCOORD.

banding e vertex banding data with four floating-point components. is must
be declared as being flat shaded (no interpolation). In HLSL and PSSL,
this has the user-defined semantic U_BANDING.

glyph e vertex glyph data with four signed integer components. is must be
declared as being flat shaded (no interpolation). In HLSL and PSSL, this
has the user-defined semantic U_GLYPH.

curveTexture e 2D texture map having four floating-point components containing
curve data.

bandTexture e 2D texture map having two unsigned integer components
containing band data.

Furthermore, if the kFragmentShaderMain flag is omitted, then additional shader code supplied by the
application must call the SlugRender() function with the parameters shown below. (In GLSL, the
curveData and bandData parameters have the types sampler2D and usampler2D, respectively.) e
return value is a linear RGBA color with the glyph coverage stored in the alpha component.

float4 SlugRender(Texture2D curveData, // Curve texture map.
 Texture2D<uint4> bandData, // Band texture map.
 float2 pixelPosition, // Vertex texcoord.
 float4 vertexColor, // Vertex color.
 float4 bandTransform, // Vertex banding.
 int4 glyphData); // Vertex glyph.

164 Programming Reference

GetGlyphContourCurveCount() function
e GetGlyphContourCurveCount() function returns the number of Bézier curves composing a specific
glyph.

Prototype

int32 GetGlyphContourCurveCount(const FontHeader *fontHeader,
 int32 glyphIndex);

Parameters

Parameter Description

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

glyphIndex e index of the glyph within the font.

Description
e GetGlyphContourCurveCount() function returns the number of quadratic Bézier curves composing
the glyph with index specified by the glyphIndex parameter in the font specified by the fontHeader
parameter. is function should be called to determine how much space needs to be allocated for the
curve data returned by the GetGlyphContourData() function.

If a font does not contain contour data, then the GetGlyphContourCurveCount() function always
returns zero. A font contains contour data only if it was converted to the Slug format with the -contours
option specified on the command line of the slugfont tool.

e glyph index corresponding to a specific Unicode character value can be retrieved with the
GetGlyphIndex() function.

GetGlyphContourData() function 165

GetGlyphContourData() function
e GetGlyphContourData() function returns the set of Bézier curves composing a specific glyph.

Prototype

void GetGlyphContourData(const FontHeader *fontHeader,
 int32 glyphIndex,
 const SlugFileHeader *slugFileHeader,
 const Texel16 *curveTexture,
 QuadraticBezier2D *contourCurve);

Parameters

Parameter Description

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

glyphIndex e index of the glyph within the font.

slugFileHeader A pointer to the SlugFileHeader structure beginning at the first byte of the
contents of a particular .slug file.

curveTexture A pointer to the decompressed curve texture data previously extracted with the
ExtractCurveTexture() function for the same value of the slugFileHeader
parameter.

contourCurve A pointer to an array to which the Bézier curves are written. e number of
entries in this array must be at least the number returned by the
GetGlyphContourCurveCount() function for the same glyph index.

Description
e GetGlyphContourData() function writes the set of quadratic Bézier curves composing the glyph
with index specified by the glyphIndex parameter in the font specified by the fontHeader parameter to
the array specified by the contourCurve parameter. e application is responsible for allocating the
memory for the array, and it must be large enough to hold the number of Bézier curves returned by the
GetGlyphContourCurveCount() function for the same glyph index in the same font.

e individual Bézier curves are read from the same curve texture data that is used for rendering.
Information about this curve texture is stored in the SlugFileHeader structure, so it must be passed to
the GetGlyphContourData() function in the slugFileHeader parameter. e data passed through the

166 Programming Reference

curveTexture parameter must be the texture data previously extracted from the .slug file with the
ExtractCurveTexture() function.

e glyph index corresponding to a specific Unicode character value can be retrieved with the
GetGlyphIndex() function.

GetGlyphData() function 167

GetGlyphData() function
e GetGlyphData() function returns a pointer to the GlyphData structure for a specific character.

Prototype

const GlyphData *GetGlyphData(const FontHeader *fontHeader,
 uint32 unicode);

Parameters

Parameter Description

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

unicode e Unicode character value.

Description
e GetGlyphData() function returns a pointer to the GlyphData structure corresponding to the
Unicode character specified by the unicode parameter. If the font does not contain a glyph for that
character, then the return value is a pointer to the GlyphData structure for the glyph used in place of a
missing character, which is the same pointer returned when the unicode parameter is zero. e return
value is never nullptr.

168 Programming Reference

GetGlyphIndex() function
e GetGlyphIndex() function returns the glyph index for a specific character.

Prototype

int32 GetGlyphIndex(const FontHeader *fontHeader,
 uint32 unicode);

Parameters

Parameter Description

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

unicode e Unicode character value.

Description
e GetGlyphIndex() function returns the glyph index corresponding to the Unicode character
specified by the unicode parameter. If the font does not contain a glyph for that character, then the
return value is zero, which is the valid index for the glyph used in place of a missing character.

GetIconData() function 169

GetIconData() function
e GetIconData() function returns a pointer to the IconData structure for a specific icon.

Prototype

const IconData *GetIconData(const AlbumHeader *albumHeader,
 uint32 index);

Parameters

Parameter Description

albumHeader A pointer to the AlbumHeader structure retrieved with the GetAlbumHeader()
function for a particular .slug file.

index e index of the icon within the album. is index must be between 0 and one
less than the count given by the iconCount field of the AlbumHeader structure,
inclusive.

Description
e GetIconData() function returns a pointer to the IconData structure for the icon within an album
corresponding to the index parameter. e return value is never nullptr.

170 Programming Reference

GetKernValue() function
e GetKernValue() function determines the amount of kerning that should be applied between two
glyphs.

Prototype

float GetKernValue(const FontHeader *fontHeader,
 const GlyphData *glyphData,
 int32 leftIndex);

Parameters

Parameter Description

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

glyphData A pointer to a GlyphData structure corresponding to the second glyph in the
pair.

leftIndex e index of the first glyph in the pair.

Description
e GetKernValue() function determines whether kerning should be applied between a pair of glyphs
and, if so, returns the kern distance in em space. Negative kern values shi the second glyph in the pair
to the le, and positive kern values shi the second glyph to the right. If no kerning should be applied
to the pair of glyphs, then the return value is zero.

e glyphData parameter specifies the GlyphData structure corresponding to the second glyph in the
pair and is typically obtained with the GetGlyphData() function. e leftIndex parameter specifies the
index of the first glyph in the pair.

If no kerning data was imported from the original font, then the GetKernValue() function always
returns zero.

GetNontextureDataSize() function 171

GetNontextureDataSize() function
e GetNontextureDataSize() function returns the size of the data stored in a .slug file excluding the
curve and band textures at the end.

Prototype

uint32 GetNontextureDataSize(const SlugFileHeader *fileHeader);

Parameters

Parameter Description

fileHeader A pointer to the SlugFileHeader structure beginning at the first byte of the
contents of a particular .slug file.

Description
e GetNontextureDataSize() function returns the data size, in bytes, of all the data in a .slug file
preceding the curve and band texture stored at the end. Aer the curve and band textures have been
decompressed, the contents of the .slug file beyond the size returned by this function may be discarded.

172 Programming Reference

GetPictureRenderFlags() function
e GetPictureRenderFlags() function returns the render flags that are appropriate for a specific set
of picture flags.

Prototype

uint32 GetPictureRenderFlags(uint32 pictureFlags,
 uint32 renderFlags = 0);

Parameters

Parameter Description

pictureFlags e picture flags given by the pictureFlags field of the PictureData structure.

renderFlags e initial render flags. is parameter is zero if omitted.

Description
e GetPictureRenderFlags() function returns the render flags that are appropriate for the specific set
of picture flags given by the pictureFlags parameter. e returned render flags would normally be
included in the render flags passed to the GetShaderIndices() function. e value of the pictureFlags
parameter would normally be taken from the pictureFlags field of the PictureData structure.

If the renderFlags parameter is specified, then it is modified to include or exclude render flags as
necessary, and the return value includes any render flags that are not affected.

GetShaderIndices() function 173

GetShaderIndices() function
e GetShaderIndices() function returns vertex shader and fragment shader indices for drawing
glyphs or icons with specific rendering options.

Prototype

void GetShaderIndices(uint32 renderFlags,
 uint32 *vertexIndex,
 uint32 *fragmentIndex);

Parameters

Parameter Description

renderFlags e renderFlags specifying the rendering options to be applied.

vertexIndex A pointer to the location that receives the vertex shader index.

fragmentIndex A pointer to the location that receives the fragment shader index.

Description
e GetShaderIndices() function returns the internal indices of the vertex shader and fragment shader
used to draw glyphs or icons with specific rendering options. e value returned in vertexIndex is
always less than kMaxVertexShaderCount, and the value returned in fragmentIndex is always less than
kMaxFragmentShaderCount. ese indices should be passed to the GetVertexShaderSourceCode() and
GetFragmentShaderSourceCode() functions.

e following values can be combined (through logical OR) for the renderFlags parameter. For shaders
that will be used to render glyphs, the renderFlags parameter should have the same value that is
specified in renderFlags field of the LayoutData structure.

Value Description

kRenderOpticalWeight When rendering, coverage values are remapped to
increase the optical weight of the glyphs. is can improve
the appearance of small text, but usually looks good only
for dark text on a light background.

kRenderLinearCurves e fragment shader checks whether an icon or
component of a picture is composed of straight lines and
chooses a faster path for them when possible. is flag

174 Programming Reference

should not be specified for shaders that will be used to
render glyphs.

kRenderStrokes e fragment shader is capable of rendering strokes. is
flag is required when strokes are rendered individually or
as part of a picture. is flag should not be specified for
shaders that will be used to render glyphs.

kRenderGradients e fragment shader is capable of rendering gradients. If
this flag is not set, then all gradient fills are rendered with
solid colors instead. is flag should not be specified for
shaders that will be used to render glyphs.

kRenderMulticolor An icon is rendered with multiple color layers, if available.
e output color is always premultiplied by the coverage.
is flag applies only to icons and must not be specified
when rendering glyphs or pictures.

kRenderPremultiplyCoverage e color output by the fragment shader is premultiplied
by the coverage. is flag should not be specified if the
kRenderMulticolor flag is specified.

kRenderPremultiplyInverseCoverage e color output by the fragment shader is premultiplied
by the inverse of the coverage. is flag should not be
specified if the kRenderMulticolor flag or
kRenderPremultiplyCoverage flag is specified.

GetUnicodeCharacterFlags() function 175

GetUnicodeCharacterFlags() function
e GetUnicodeCharacterFlags() function returns various property flags for a Unicode character.

Prototype

uint16 GetUnicodeCharacterFlags(uint32 unicode);

Parameters

Parameter Description

unicode e Unicode value of the character.

Description
e GetUnicodeCharacterFlags() function returns flags corresponding to various Unicode properties
of the character specified by the unicode parameter. e flags can be a combination (through logical
OR) of the following values.

Value Description

kCharacterInvisible e character is invisible and does not generate any glyphs.

kCharacterCombiningMark e character is a combining mark.

kCharacterLeftToRight e character is strongly le-to-right.

kCharacterRightToLeft e character is strongly right-to-le.

kCharacterBidiMirror e character should be mirrored in right-to-le text.

kCharacterJoinNext e character can join cursively with the next character.

kCharacterJoinPrevious e character can join cursively with the previous character.

kCharacterJoinIgnore e character is ignored for the purposes of cursive joining.

kCharacterVerticalUpright e character is displayed upright (not rotated) in vertical
layout.

176 Programming Reference

GetVertexShaderSourceCode() function
e GetVertexShaderSourceCode() function returns the source code for a glyph vertex shader.

Prototype

int32 GetVertexShaderSourceCode(uint32 vertexIndex,
 const char **vertexCode,
 uint32 shaderFlags = kVertexShaderDefault);

Parameters

Parameter Description

vertexIndex e index of the vertex shader returned by the GetShaderIndices() function.

vertexCode A pointer to the location that receives an array of pointers to the components of
the vertex shader source code. e size of the array must be at least
kMaxVertexStringCount.

shaderFlags Flags that determine what components of the shader are returned. See the
description for information about the individual bits. e value
kVertexShaderDefault should be specified unless the shader is being
incorporated into an external material system.

Description
e GetVertexShaderSourceCode() function constructs an array of pointers to strings that make up
the source code for a glyph vertex shader. e exact components stored in the array are determined by
the rendering options corresponding to the value of the vertexIndex parameter and the flags specified
by the shaderFlags parameter. Pointers to one or more strings are stored in the array specified by the
vertexCode parameter. e return value is the number of strings that were stored in the array.

e following values can be combined (through logical OR) in the shaderFlags parameter.

Value Description

kVertexShaderProlog A prolog component containing type definitions for compatibility across
different shading languages is included in the returned string array.

kVertexShaderMain e component containing a main() function and declarations for
attributes, uniform parameters, and interpolants is included in the
returned string array.

GetVertexShaderSourceCode() function 177

kVertexShaderDefault All components required for a standalone vertex shader are included in
the returned string array.

e shaderFlags parameter is intended to be used to explicitly omit various shader components when
the Slug shader is to be incorporated into an external material system. e value kVertexShader-
Default should always be specified for standalone vertex shaders, and it has the effect of including all
components.

If the shaderFlags parameter is not kVertexShaderDefault, then an external material system must
ensure that certain declarations have been made so that the returned shader code is valid. In particular,
if the kVertexShaderProlog flag is omitted, then the application must ensure that the type and function
identifiers listed in the following table are available. (ese identifiers have different names in GLSL.)

Identifier Description

int4 A signed integer with four components.

uint2 An unsigned integer with two components.

float2 A floating-point value with two components.

float4 A floating-point value with four components.

In a GLSL shader under OpenGL ES, the application must also make the following declarations if the
kVertexShaderProlog flag is omitted. (ese should not be declared for desktop OpenGL.)

precision highp float;
precision highp int;

If the kVertexShaderMain flag is omitted, then the application is responsible for declaring the four
output interpolants and matching them to the input interpolants in the fragment shader, each described
in the following table. In this case, the kFragmentShaderMain flag should generally be omitted when
calling the GetFragmentShaderSourceCode() function as well.

Resource Description

color e vertex color with four floating-point components. In HLSL and
PSSL, this has the user-defined semantic U_COLOR.

texcoord e vertex texture coordinates with two floating-point components. In
HLSL and PSSL, this has the user-defined semantic U_TEXCOORD.

178 Programming Reference

banding e vertex banding data with four floating-point components. is must
be declared as being flat shaded (no interpolation). In HLSL and PSSL,
this has the user-defined semantic U_BANDING.

glyph e vertex glyph data with four signed integer components. is must be
declared as being flat shaded (no interpolation). In HLSL and PSSL, this
has the user-defined semantic U_GLYPH.

Furthermore, if the kVertexShaderMain flag is omitted, then additional shader code supplied by the
application must call the SlugUnpack() and SlugDilate() functions with the parameters shown below.
e return value of the SlugDilate() function contains the output texture coordinates. e vertex
shader must also pass the vertex color through to the fragment shader.

float4 SlugUnpack(float4 tex, // Vertex texcoords.
 float4 bnd, // Vertex banding.
 out float4 vbnd, // Output banding data.
 out int4 vgly); // Output glyph data.

float2 SlugDilate(float4 pos, // Vertex position.
 float4 tex, // Vertex texcoords.
 float4 jac, // Vertex jacobian.
 float4 m0, // MVP matrix, first row.
 float4 m1, // MVP matrix, second row.
 float4 m3, // MVP matrix, fourth row.
 float2 dim, // Viewport width and height.
 out float2 vpos); // Output vertex position.

e default vertex shader has two uniform inputs named slug_matrix and slug_viewport. e
uniform slug_matrix consists of four 4D vectors representing the four rows of the 4×4 model-view-
projection matrix. (is consists of 16 floating-point values stored in row-major order for a matrix that
transforms column vectors.) e uniform slug_viewport consists of one 2D vector containing the
width and height of the viewport, in pixels.

e vertex shader also has five varying inputs starting at attribute index 0, and these correspond to the
fields of the Vertex structure, in declaration order.

GlyphData structure 179

GlyphData structure
e GlyphData structure contains information about a specific glyph.

Fields

Field Description

Vector2D
glyphOffset

An em-space offset that is applied to the glyph. is is nonzero when a
glyph has contours identical to those of another glyph but at a different
position. is offset is already applied to the bounding box and polygon
vertices in the GraphicData base structure.

float
advanceWidth

e horizontal advance width of the glyph, in em units.

float
advanceHeight

e vertical advance height of the glyph, in em units. Zero for fonts
without vertical metrics.

float
verticalOrigin

e vertical origin of the glyph, in em units. Zero for fonts without
vertical metrics.

uint32
decomposeData

e high 8 bits contain the number of glyphs into which the glyph
decomposes, and the low 24 bits contain the offset into the font’s
decompose table at which the glyph indexes begin.

uint32
colorLayerData

e high 8 bits contain the number of color layers for the glyph, and the
low 24 bits contain the offset into the font’s layer data table at which color
layers begin for the glyph.

uint32
baseAnchorData

e high 8 bits contain the number of anchor points to which combining
marks can be attached to the glyph. e low 24 bits contain the offset into
the font’s base anchor data table at which anchor points begin for the
glyph.

uint32
markAttachData

e high 8 bits contain the number of anchor points at which a
combining mark can attach to another glyph. e low 24 bits contain the
offset into the font’s mark attach data table at which anchor points begin
for the glyph. is is nonzero only for glyphs that are combining marks.

uint32
kernData[2]

e high 12 bits contain the number of kern pairs for which the glyph is
the second of each pair, and the low 20 bits contain the offset into the
font’s kerning data table at which kern pairs begin for the glyph. e first
entry is for horizontal layout, and the second entry is for vertical layout.

180 Programming Reference

uint32
sequenceData

e high 12 bits contain the number of sequences for the glyph, and the
low 20 bits contain the offset into the font’s sequence data table at which
sequences begin for the glyph.

uint32
alternateData

e high 8 bits contain the number of alternates for the glyph, and the
low 24 bits contain the offset into the font’s alternate data table at which
alternates begin for the glyph.

uint32
caretPositionData

e high 8 bits contain the number of caret positions for the glyph, and
the low 24 bits contain the offset into the font’s caret position data table
where the positions are stored.

Description
Each glyph in a font has an associated GlyphData structure that contains information about its rendering
and layout properties. e GlyphData structure adds fields to the GraphicData base structure.

e GlyphData structure corresponding to a specific Unicode character in a specific font can be retrieved
with the GetGlyphData() function.

GlyphRange structure 181

GlyphRange structure
e GlyphRange structure contains information about a range of compiled glyphs.

Fields

Field Description

int32
firstGlyph

e number of the first glyph in the range. is must not be negative or
greater than the total number of compiled glyphs.

int32
lastGlyph

e number of the last glyph in the range. is can be set to
kMaxStringGlyphCount to indicate that all glyphs up to the null
terminator should be included. If this is less than the number of the first
glyph, then the range is considered empty.

float
spaceJustify

For fully justified text, the advance added to each character designated as
a space, in absolute units. is field is used only if the
kLayoutFullJustification bit is specified in the layoutFlags field of
the LayoutData structure.

Description
e GlyphRange structure is generally used by the library to specify a contiguous subset of the glyphs
that have been compiled into a CompiledText structure by the CompileString() function. Many library
functions optionally accept a GlyphRange structure to limit processing to the range specified. If no
GlyphRange structure is specified, then all of the compiled glyphs are processed.

e firstGlyph and lastGlyph fields specify the zero-based indexes of the first and last glyphs in the
range. e firstGlyph field must be set to a value in the range []0, 1n − , where n is the total number of
compiled glyphs, but the lastGlyph field can have any value. If the lastGlyph field is greater than or
equal to the total number of compiled glyphs, then it indicates that processing should end with the last
compiled glyph. Setting the lastGlyph field to kMaxStringGlyphCount ensures that glyphs are processed
until the null terminator is reached.

If the value of the lastGlyph field is less than the value of the firstGlyph field, then the range is
considered empty. Functions that accept a GlyphRange structure recognize this condition and generate
outputs appropriate for a zero-length sequence of glyphs.

e spaceJustify field is used to perform full justification when the kLayoutFullJustification bit is
specified in the layoutFlags field of the LayoutData structure. It contains the extra amount of advance
width to apply to each space character in a line of text so that the glyphs perfectly fill the distance
between the le and right margins. e value in the spaceJustify field is calculated by the library by
functions that generate LineData structures, and it would normally be set to 0.0 by the application when
the GlyphRange structure is used by itself.

182 Programming Reference

GraphicData structure
e GraphicData structure contains information common to glyphs and icons.

Fields

Field Description

Box2D
boundingBox

e bounding box of the graphic in the coordinate system of the em
square.

uint16
bandLocation[2]

e location in the band texture at which data for the graphic begins.

int16
bandCount[2]

e number of vertical and horizontal bands holding curve index data for
the graphic. ese are zero if and only if the graphic has no curves (e.g.,
for a space glyph).

Vector2D
bandScale

e x and y scales by which em-space coordinates are multiplied to
calculate band indices.

uint16
contourCurveCount

e total number of Bézier curves defining the contours of the graphic. If
contour curve data is not present in a font, then this is zero, so this field
should not be used to determine whether a glyph has curves.

uint16
polygonCode

e code for the graphic’s bounding polygon. If this is zero, then the
graphic is always rendered with its bounding box quad.

uint32
contourData

e offset into the contour data table at which contour data begins for the
graphic.

PolygonVertex
polygonVertex[6];

e vertex coordinates for the bounding polygon when the polygonCode
field is nonzero.

Description
e GlyphData and IconData structures each have a GraphicData base structure that holds information
common to both types of graphics.

IconData structure 183

IconData structure
e IconData structure contains information about a specific icon.

Fields

Field Description

uint16
iconFlags

Flags indicating various properties of the icon. See the description for
information about the individual bits.

uint16
gradientCode

A code corresponding to the type of gradient used by the icon. is is
zero if no gradient is applied.

uint16
colorDataLocation[2]

e location in the band texture at which color data for the icon begins, if
available.

Description
Each icon has an associated IconData structure that contains information about its rendering and layout
properties. e IconData structure adds fields to the GraphicData base structure.

e following values can be combined (through logical OR) in the iconFlags field.

Value Description

kIconLinear e icon is composed entirely of straight lines. e kRenderLinearCurves
flag may be specified for the GetShaderIndices() function to enable the
shader optimization, but it is not required.

kIconMulticolor e icon contains multiple color layers. e kRenderMulticolor flag
should be specified for the GetShaderIndices() function to enable
multicolor rendering.

184 Programming Reference

ImportIconData() function
e ImportIconData() function generates the texture data and icon properties structure for a
monochrome icon defined by a set of quadratic Bézier curves.

Prototype

bool ImportIconData(int32 curveCount,
 const QuadraticBezier2D *curveArray,
 TextureBuffer *curveTextureBuffer,
 TextureBuffer *bandTextureBuffer,
 IconData *iconData,
 int32 maxVertexCount = 4,
 float interiorEdgeFactor = 1.0F,
 int32 maxBandCount = kMaxImportBandCount,
 FillWorkspace *workspace = nullptr);

Parameters

Parameter Description

curveCount e number of quadratic Bézier curves making up the icon.

curveArray A pointer to an array containing the quadratic Bézier curves making up the
icon.

curveTextureBuffer A pointer to a TextureBuffer structure describing the curve texture map.

bandTextureBuffer A pointer to a TextureBuffer structure describing the band texture map.

iconData A pointer to an IconData structure to which the properties of the icon are
written.

maxVertexCount e maximum number of vertices allowed in the icon’s bounding polygon.
e valid values for this parameter are 0, 4, 5, and 6.

interiorEdgeFactor A factor that multiplies the cost of interior edges in the icon’s bounding
polygon. is is ignored if maxVertexCount is 0.

maxBandCount e maximum number of bands that can be generated for the icon. is
must be in the range [1, kMaxImportBandCount].

ImportIconData() function 185

workspace A pointer to an FillWorkspace structure that will be used for temporary
storage. If this is nullptr, then an internal workspace shared among all
callers is used. See the FillWorkspace structure for information about
reentrancy.

Description
e ImportIconData() function imports an icon defined by the set of quadratic Bézier curves specified
by the curveCount and curveArray parameters. e control points are stored in the curve texture map
specified by the curveTextureBuffer parameter, and the band information is stored in the band texture
map specified by the bandTextureBuffer parameter. e icon properties are stored in the structure
specified by the iconData parameter.

e TextureBuffer structures specified by the curveTextureBuffer and bandTextureBuffer
parameters should be initialized to refer to memory buffers allocated by the application for the curve
and band textures. e textures must be large enough to hold the data generated for all of the icons being
imported (through multiple calls to the ImportIconData() function), and it is usually the case that
much more space than the anticipated requirements is allocated. e unused portion of each texture
can be discarded aer the icons are imported. e writeLocation field of each TextureBuffer structure
should initially be set to (0, 0). Aer each successful icon import, this field will have been updated to
the location of the first unused texel position, and another icon can be imported without changing its
value. e final value of the writeLocation field indicates how much of each texture was actually used.

e ImportIconData() function returns true if there is enough space remaining in both the curve and
band textures to store the icon. Otherwise, if not enough space is available, then the return value is
false.

Each call to the ImportIconData() function must specify a different IconData structure for the
iconData parameter. is structure is filled with information about the icon needed to render it, such
as the location within the band texture where data for the icon begins. It is used to uniquely identify the
icon for the BuildIcon() function.

e maxVertexCount parameter specifies the maximum number of vertices allowed in the bounding
polygon calculated for the icon. is value is clamped to the range 4–6, and a bounding polygon is
calculated having a minimum of three sides and the maximum number of sides given by the clamped
value. Note that larger values of maxVertexCount require significantly more computation, so the default
value of 4 should be used when the performance of the ImportIconData() function is more important
than a potentially small increase in the icon’s rendering performance. If the maxVertexCount parameter
is zero, then it indicates that the icon’s geometry is always to be built using a quad corresponding to its
bounding box, regardless of the geometry type passed to the BuildIcon() function.

186 Programming Reference

ImportMulticolorIconData() function
e ImportMulticolorIconData() function generates the texture data and icon properties structure for
a multicolor icon defined by a set of quadratic Bézier curves.

Prototype

bool ImportMulticolorIconData(int32 layerCount,
 const Color4U *layerColor,
 const int32 *curveCount,
 const QuadraticBezier2D *const *curveArray,
 TextureBuffer *curveTextureBuffer,
 TextureBuffer *bandTextureBuffer,
 IconData *iconData,
 int32 maxVertexCount = 4,
 float interiorEdgeFactor = 1.0F,
 int32 maxBandCount = kMaxImportBandCount,
 FillWorkspace *workspace = nullptr);

Parameters

Parameter Description

layerCount e number of color layers making up the icon.

layerColor A pointer to an array specifying the color of each layer.

curveCount A pointer to an array containing the number of quadratic Bézier curves
making up each layer.

curveArray A pointer to an array containing a pointer to the quadratic Bézier curves
making up each layer.

curveTextureBuffer A pointer to a TextureBuffer structure describing the curve texture map.

bandTextureBuffer A pointer to a TextureBuffer structure describing the band texture map.

iconData A pointer to an IconData structure to which the properties of the icon are
written.

maxVertexCount e maximum number of vertices allowed in the icon’s bounding polygon.
e valid values for this parameter are 0, 4, 5, and 6.

interiorEdgeFactor A factor that multiplies the cost of interior edges in the icon’s bounding
polygon. is is ignored if maxVertexCount is 0.

ImportMulticolorIconData() function 187

maxBandCount e maximum number of bands that can be generated for the icon. is
must be in the range [1, kMaxImportBandCount].

workspace A pointer to an FillWorkspace structure that will be used for temporary
storage. If this is nullptr, then an internal workspace shared among all
callers is used. See the FillWorkspace structure for information about
reentrancy.

Description
e ImportMulticolorIconData() function is similar to the ImportIconData() function, except that
it imports an icon defined by multiple layers having different colors.

e layerCount parameter specifies the number of layers in the icon. e layerColor, curveCount, and
curveArray parameters each point to an array having the length given by layerCount. Each entry in the
curveCount array specifies the number of curves in an array pointed to by the corresponding entry in
the curveArray array. Layers should be arranged in back-to-front order.

Each entry in the layerColor array specifies the color of the corresponding layer in the sRGB color
space with gamma correction applied. e alpha channel of each color is unused and should be set to
255, representing full opacity.

188 Programming Reference

LayoutData structure
e LayoutData structure contains the state that controls the typesetting options for a line of text.

Fields

Field Description

uint32
fontType

e font type code used for layout with a font map. Set to 0 when
building glyph data with a single font.

float
fontSize

e font size, in absolute units. is corresponds to the size of the em
square.

float
fontStretch

A stretch factor applied to the font only in the horizontal direction. is
is a scale applied to each glyph as well as the advance width, tracking,
and kerning distances. Set to 1.0 for no stretch.

float
textTracking

e extra horizontal space added between all pairs of base glyphs, in em
units. is can be positive or negative. Set to 0.0 for no tracking.

float
textSkew

A skew value representing the ratio of the change in x coordinate to the
change in y coordinate measured upward from the baseline. Positive
values cause the text to slant to the right, and negative values cause the
text to slant to the le. Set to 0.0 for no skew.

Vector2D
textScale

An x and y scale adjustment applied to each glyph. e font size and
stretch are multiplied by this scale to obtain the final em size of each
glyph. Text decorations are not affected by the scale. ese scales must
be positive values. Set to (1.0, 1.0) for no scale.

Vector2D
textOffset

An x and y offset adjustment applied to each glyph. Positive values
offset right and upward, and negative values offset le and downward.
e offset is applied aer the scale. Text decorations are not affected by
the offset. Set to (0.0, 0.0) for no offset.

ColorData
textColor

e solid color or gradient applied to the text. See the description of the
ColorData structure.

AlignmentType
textAlignment

e alignment applied to multi-line text. See the description for
information about possible values. If the kLayoutFullJustification
flag is specified in the layoutFlags field, then the alignment applies to
the last line of each paragraph.

float
textLeading

e amount of leading applied to multi-line text, in em units. is is the
distance between the baselines of consecutive lines of text.

LayoutData structure 189

float
paragraphSpacing

Additional spacing added between paragraphs, in em units. is field is
used only if the kLayoutParagraphAttributes bit is specified in the
layoutFlags field.

float
leftMargin

e paragraph le margin, in absolute units. is field is used only if
the kLayoutParagraphAttributes bit is specified in the layoutFlags
field.

float
rightMargin

e paragraph right margin, in absolute units. is field is used only if
the kLayoutParagraphAttributes bit is specified in the layoutFlags
field.

float
firstLineIndent

e indent distance for the first line of each paragraph, in absolute
units. is is added to the le or right margin, and it can be positive or
negative. is field is used only if the kLayoutParagraphAttributes bit
is specified in the layoutFlags field.

float
tabSize

e distance between consecutive tab stops, in absolute units. e tab
size must be greater than zero. is field is used only if the
kLayoutTabSpacing bit is specified in the layoutFlags field.

float
tabRound

e tab stop rounding distance, in em units. is is added to the
current drawing position when determining the next tab stop.

uint32
layoutFlags

Various flags that specify layout options. See the description for
information about the individual bits. A value of zero causes kerning,
sequence replacement, combining marks, and multicolor glyphs to be
enabled, and it causes format directives and clipping planes to be
disabled.

uint32
renderFlags

Various flags that specify rendering options. See the description for
information about the individual bits. A value of zero causes kerning,
combining marks, and sequence replacement to be enabled, and it
causes format directives, clipping planes, grid mode, paragraph
attributes, tab spacing, and full justification to be disabled.

GeometryType
geometryType

e type of geometry used to render each glyph. See the description for
information about the various types.

uint32
formatMask

A mask that determines which embedded format directives can be
applied. A one bit indicates that the corresponding format directive is
enabled. See the description for information about the individual bits.
is field is used only if the kLayoutFormatDirectives bit is specified
in the layoutFlags field. A value of ~0 enables all format directives.

190 Programming Reference

uint32
sequenceMask

A mask that determines which types of sequence replacements are
applied. A one bit indicates that the corresponding type of sequence
replacement is enabled. See the description for information about the
individual bits. is field is used only if the kLayoutSequenceDisable is
not specified in the layoutFlags field.

uint32
alternateMask

A mask that determines which types of alternate substitution features
are applied. A one bit indicates that the corresponding type of alternate
substitution is enabled. See the description for information about the
individual bits. is field is used only if the kLayoutAlternateDisable
is not specified in the layoutFlags field.

uint32
styleIndex

e style index used when the kAlternateStylistic bit is set in the
alternateMask field. is value should be in the range 1–20, and it
corresponds to the style set defined by the original font.

int32
scriptLevel

e transform-based superscript or subscript level applied to the
glyphs. Zero means no script transform, positive values correspond to
superscripts, and negative values correspond to subscripts.

bool
decorationFlag
[kDecorationCount]

An array of flags that specify which decorations to apply to the text. See
the description for information about the individual array indexes.

int32
spaceCount

e number of space characters specified by the spaceArray field. is
field is used only if the kLayoutFullJustification bit is specified in
the layoutFlags field.

const uint32
*spaceArray

A pointer to an array of space characters with spaceCount entries. e
values in this array are Unicode characters, and they must be sorted in
ascending order. is field is used only if the
kLayoutFullJustification bit is specified in the layoutFlags field.

uint32
placeholderBase

e base Unicode value for an application-defined range of special
characters that indicate placeholders for external graphics. is field
must not be zero if placeholders are enabled. A character with the
Unicode value specified by this field corresponds to the placeholder
with index zero.

int32
placeholderCount

e number of Unicode values in the range of special characters that
indicate placeholders. e maximum allowed value is given by the
kMaxStringPlaceholderCount constant, which is 65536. Placeholder
functionality is enabled when this field is not zero.

LayoutData structure 191

const float
*placeholderWidthArray

A pointer to an array containing the widths of all placeholders, in
absolute units. If the placeholderCount field is not zero, then this field
must point to an array having placeholderCount entries.

EffectType
effectType

e type of the effect(s) to apply. Set to kEffectNone for no effect.

Vector2D
shadowOffset

e x and y offsets at which the glyph shadow effect is rendered, in em
units. Positive values offset right and downward. is field is used only
if the effectType field is kEffectShadow or kEffectOutlineShadow.

ColorData
shadowColor

e solid color or gradient applied to the glyph shadow effect. See the
description of the ColorData structure. is field is used only if the
effectType field is kEffectShadow or kEffectOutlineShadow.

Vector2D
outlineOffset

e x and y offsets at which the glyph outline effect is rendered, in em
units. Positive values offset right and downward. is field is used only
if the effectType field is kEffectOutline or kEffectOutlineShadow.

ColorData
outlineColor

e solid color or gradient applied to the glyph outline effect. See the
description of the ColorData structure. is field is used only if the
effectType field is kEffectOutline or kEffectOutlineShadow.

Vector2D
objectScale

e x and y scales applied to the final vertex positions for each glyph.

Vector2D
objectOffset

e x and y offsets applied to the final vertex positions for each glyph
aer the scales are applied.

float
clipLeft

e x coordinate at which glyphs are clipped on the le. is field is
used only if the kLayoutClippingPlanes bit is specified in the
layoutFlags field.

float
clipRight

e x coordinate at which glyphs are clipped on the right. is field is
used only if the kLayoutClippingPlanes bit is specified in the
layoutFlags field.

int32
missingGlyphIndex

e index of the glyph to be drawn when a character is missing from a
font.

const LayoutData
*defaultLayoutData

An optional pointer to another LayoutData structure containing default
values.

192 Programming Reference

Description
e LayoutData structure controls everything about the typesetting options that ultimately determine
the appearance of a line of text. e fields of the LayoutData structure can be initialized to their default
values by calling the SetDefaultLayoutData() function.

Several important functions in the Slug library take a pointer to a LayoutData structure on entry, and
most of those functions can return an updated LayoutData structure on exit. e layout data can change
because many of the fields belonging to this structure can be dynamically modified by format directives
embedded in a text string if the kLayoutFormatDirectives bit is set in the layoutFlags field. (See
Chapter 6 for more information about using format directives.)

e renderFlags field may contain a combination (through logical OR) of the flag values listed for the
renderFlags parameter passed to the GetShaderIndices() function that specifically apply to glyphs.

e following values are the alignment types that can be specified in the textAlignment field.

Value Description

kAlignmentLeft Text is aligned with the rendering position on the le end of each line.

kAlignmentRight Text is aligned with the rendering position on the right end of each line.

kAlignmentCenter Text is aligned with the rendering position at the center of each line.

e following values can be combined (through logical OR) in the layoutFlags field.

Value Description

kLayoutFormatDirectives Format directives embedded in the text are recognized and
applied.

kLayoutClippingPlanes Each glyph is clipped against le and right boundaries specified by
the clipLeft and clipRight fields.

kLayoutKernDisable Kerning is not applied to the text. When this flag is not set,
kerning is applied according to the tables specified in the original
font.

kLayoutMarkDisable Combining marks are not repositioned in the text. When this flag
is not set, each combining mark is moved to the appropriate
attachment point belonging to the preceding glyph.

kLayoutDecomposeDisable Glyphs are not decomposed in the text. When this flag is not set,
specific glyphs can be decomposed into multiple glyphs as
specified in the original font.

LayoutData structure 193

kLayoutSequenceDisable Sequences are not matched in the text. When this flag is not set,
tables specified in the original font can cause certain sequences of
glyphs to be replaced by one or more other glyphs.

kLayoutAlternateDisable Alternate glyph substitution is not applied in the text. When this
flag is not set, various substitution features can cause glyphs to be
replaced by alternate forms.

kLayoutLayerDisable Only monochrome glyphs are rendered, and color layers in emoji
are ignored.

kLayoutLayerTextColor e color of each layer in an emoji is multiplied by the current text
color.

kLayoutFullJustification Text is rendered with full justification.

kLayoutRightToLeft e forward writing direction is right-to-le.

kLayoutBidirectional Bidirectional text layout is enabled.

kLayoutVerticalRotation Vertical text layout is enabled. When this flag is set, glyphs
corresponding to upright characters use vertical metrics, can be
replaced by alternate vertical forms, and are rotated 90 degrees
counterclockwise.

kLayoutGridPositioning Grid positioning mode is enabled. When this flag is set, glyph
advance widths and kerning are ignored, and each glyph is
centered on the current drawing position. e drawing position is
advanced from one glyph to the next only by the tracking value.

kLayoutParagraphAttributes Paragraph spacing, margins, and first-line indent are enabled.

kLayoutTabSpacing Tab spacing is enabled.

kLayoutSoftHyphen Breaking lines at so hyphens is enabled.

kLayoutWrapDisable Lines are broken only at hard break characters and not when the
maximum span is exceeded.

194 Programming Reference

e following values are the glyph geometry types that can be specified in the geometryType field.

Value Description

kGeometryQuads Each glyph is rendered with a single quad composed of four vertices
and two triangles.

kGeometryPolygons Each glyph is rendered with a tight bounding polygon having
between 3 and 6 vertices. If polygon data is not available in the font,
then each glyph is rendered as a quad.

kGeometryRectangles Each glyph is rendered with exactly one triangle with the
expectation that the window-aligned bounding rectangle will be
filled. In this case, no data is written to the triangleData array
specified in the GeometryBuffer structure, so it can be nullptr. is
type can be used only when rectangle primitives are available, such
as provided by the VK_NV_fill_rectangle and
GL_NV_fill_rectangle extensions.

e following values can be combined (through logical OR) in the formatMask field. e format mask
is used only when the kLayoutFormatDirectives bit is set in the layoutFlags field.

Value Description

kFormatFont Font type directive font().

kFormatSize Font size directive size().

kFormatStretch Stretch directive stretch().

kFormatTracking Tracking directive track().

kFormatSkew Skew directive skew().

kFormatScale Text scale directive scale().

kFormatOffset Text offset directive offset().

kFormatColor Color directives color() and color2().

kFormatGradient Gradient directives grad() and gcoord().

kFormatAlignment Alignment directives left(), right(), center(), and just().

kFormatLeading Leading directive lead().

kFormatParagraph Paragraph directives pspace(), margin(), and indent().

LayoutData structure 195

kFormatTab Tab size directive tab().

kFormatKern Kerning directive kern().

kFormatMark Mark placement directive mark().

kFormatDecompose Glyph decompose directive decomp().

kFormatSequence Sequence directive seq() and all specific sequence replacement
directives.

kFormatAlternate Alternate directive alt() and all specific alternate substitution
directives.

kFormatLayer Color layer directive lay().

kFormatDecoration Underline directive under() and strikethrough directive strike().

kFormatScript Transform-based subscript and superscript directive script().

kFormatGrid Grid positioning directive grid().

e following values can be combined (through logical OR) in the sequenceMask field. e sequence
mask is ignored if the kLayoutSequenceDisable bit is set in the layoutFlags field.

Value Description

kSequenceGlyphComposition Glyph compositions expected by a font to be applied in all
circumstances.

kSequenceStandardLigatures Standard ligatures provided by a font as substitute glyphs for
letter groupings such as “fi” or “ffl”. (Some fonts may specify
these as discretionary.)

kSequenceRequiredLigatures Required ligatures considered by a font to be mandatory in
some writing systems for various letter groupings.

kSequenceDiscretionaryLigatures Discretionary ligatures provided by a font as additional
glyphs that are considered optional.

kSequenceHistoricalLigatures Historical ligatures provided by a font as optional forms.

kSequenceAlternativeFractions Alternative fractions provided by a font for specific
numerators and denominators separated by a slash.

196 Programming Reference

e following values can be combined (through logical OR) in the alternateMask field. e alternate
mask is ignored if the kLayoutAlternateDisable bit is set in the layoutFlags field.

Value Description

kAlternateStylistic Replace glyphs with alternates from a stylistic set. e
styleIndex field determines which set is used.

kAlternateHistorical Replace glyphs with historical alternates.

kAlternateLowerSmallCaps Replace lowercase characters with small caps variants.

kAlternateUpperSmallCaps Replace uppercase characters with small caps variants.

kAlternateTitlingCaps Replace glyphs with titling caps variants.

kAlternateUnicase Replace both cases with forms having equal heights.

kAlternateCaseForms Replace case-sensitive punctuation with uppercase forms.

kAlternateSlashedZero Replace the number zero with a slashed variant.

kAlternateHyphenMinus Replace the hyphen (U+002D) with a minus sign (U+2212).

kAlternateFractions Replace figures separated by a slash with numerators, the
fraction slash, and denominators.

kAlternateDotless Replace dotted letters like i and j with dotless forms (usually
for math typesetting).

kAlternateLiningFigures Replace old-style figures with lining figures.

kAlternateOldstyleFigures Replace lining figures with old-style figures.

kAlternateTabularFigures Replace proportional figures with tabular figures.

kAlternateProportionalFigures Replace tabular figures with proportional figures.

kAlternateSubscript Replace glyphs with subscript variants.

kAlternateSuperscript Replace glyphs with superscript variants.

kAlternateInferiors Replace glyphs with subscripts intended for scientific
formulas.

kAlternateOrdinals Replace glyphs with superscripts intended for ordinal
numbers.

LayoutData structure 197

e following values are the effect types that can be specified in the effectType field.

Value Description

kEffectNone No effect is applied.

kEffectShadow A drop shadow is rendered beneath each glyph.

kEffectOutline An expanded outline is rendered beneath each glyph. e font must
contain outline glyph data for this effect to appear.

kEffectOutlineShadow Both an expanded outline and a drop shadow of the outline are
rendered. If the font does not contain outline glyph effect data, then
it's as if the effect type is kEffectShadow.

198 Programming Reference

LayoutMultiLineText() function
e LayoutMultiLineText() function generates the glyph indices and drawing positions for multiple
lines of text.

Prototype

int32 LayoutMultiLineText(const CompiledText *compiledText,
 const FontHeader *fontHeader,
 int32 lineIndex,
 int32 lineCount,
 const LineData *lineDataArray,
 const Point2D& position,
 float maxSpan,
 int32 *glyphIndexBuffer,
 Point2D *positionBuffer,
 Matrix2D *matrixBuffer,
 colorType *colorBuffer,
 PlaceholderBuffer *placeholderBuffer = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

lineIndex e zero-based index of the first line of text to build.

lineCount e number of lines of text to build.

lineDataArray A pointer to an array of LineData structures containing information about
each line of text. e lines of text to be built correspond to elements indexed
lineIndex through lineIndex + lineCount − 1 in this array.

position e x and y coordinates of the first glyph at the baseline of the first line of
text.

maxSpan e maximum physical horizontal span of the text.

LayoutMultiLineText() function 199

glyphIndexBuffer A pointer to an array of integers that receives glyph indices. is array must
be at least as large as the glyph count returned by the CountMultiLineText()
function.

positionBuffer A pointer to an array of Point2D structures that receives glyph indices. is
array must be at least as large as the glyph count returned by the
CountMultiLineText() function.

matrixBuffer A pointer to an array of Matrix2D structures that receives glyph transforms.
is parameter can be nullptr, in which case no per-glyph transforms are
returned. Otherwise, this array must be at least as large as the glyph count
returned by the CountMultiLineText() function.

colorBuffer A pointer to an array of Color4U or ColorRGBA structures that receives glyph
colors. is parameter can be nullptr, in which case no per-glyph colors are
returned. Otherwise, this array must be at least as large as the glyph count
returned by the CountMultiLineText() function.

placeholderBuffer A pointer to a PlaceholderBuffer structure containing information about
where the output placeholder data is stored. is parameter can be nullptr,
in which case no placeholder data is generated.

Description
e LayoutMultiLineText() function generates the glyph indices, drawing positions, transformations,
and colors for multiple lines of text. e text is processed in the same way that it is for the BuildMulti-
LineText() function. Aer possible modification by the application, the information returned by the
LayoutMultiLineText() function can be passed to the AssembleSlug() function to generate vertex and
triangle data.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileString() function. e pointer passed to the fontHeader parameter must be the
same that was passed to the fontHeader parameter of the CompileString() function.

Before the LayoutMultiLineText() function can be called, the BreakMultiLineText() and Count-
MultiLineText() functions must be called for the same compiled string to determine the locations
where lines break and the maximum amount of storage that the LayoutMultiLineText() function will
need to write its data. e compiled string must be exactly the same for all three functions to ensure that
the correct amount of storage can be allocated and that the data generated by the LayoutMulti-
LineText() function stays within the calculated limits.

e lineIndex parameter specifies the zero-based index of the first line of text to build, and the
lineCount parameter specifies the number of lines to build. e lineDataArray parameter must point
to an array of LineData structures containing at least lineIndex + lineCount elements. ese would
normally have been generated by a previous call to the BreakMultiLineText() function.

200 Programming Reference

e position parameter specifies the x and y coordinates of the le side of the first glyph at the baseline
of the first line of text. is is oen (0, 0) when the transformation matrix applied externally by the
application includes an object-space position.

e maxSpan parameter specifies the maximum physical horizontal span for all lines of text, and it’s value
should match the value previously passed to the BreakMultiLineText() function to generate the array
of LineData structures. If the text alignment is kAlignmentRight or kAlignmentCenter, as specified by
the textAlignment field of the LayoutData structure, then the maxSpan parameter is used to determine
the proper horizontal position at which each line of text is rendered. If embedded format directives are
enabled, then the alignment can be changed within a line of text, but the new alignment does not take
effect until the next line is started.

e glyphIndexBuffer parameter points to an array into which glyph indices are written, and the
positionBuffer parameter points to an array into which glyph positions are written. Each glyph
position accounts for tracking, kerning, the x and y text offsets, and combining mark attachments. Glyph
indices and positions are always returned, and these parameters cannot be nullptr.

e matrixBuffer parameter optionally points to an array into which glyph transforms are written.
Each glyph transform accounts for the font size, font stretch, x and y text scales, and the text skew that
would be applied by the BuildMultiLineText() function. e matrixBuffer parameter can be nullptr
if this information is not needed.

e colorBuffer parameter optionally points to an array into which glyph colors are written. e
colorBuffer parameter can be nullptr if this information is not needed.

e number of entries written to each array is always the same as the number of glyphs returned by the
CountMultiLineText() function. e data written to the output buffers includes glyphs that do not have
any geometry, such as the glyph corresponding to the space character. Glyph effects and text decorations
are ignored and have do not affect the number of glyphs.

If placeholders are being used, the placeholderBuffer parameter points to a PlaceholderBuffer
structure containing the address of the storage into which placeholder information is written. Upon
return from the LayoutMultiLineText() function, the PlaceholderBuffer structure is updated so that
the placeholderData field points to the next element past the data that was written. e actual number
of placeholders generated by the LayoutMultiLineText() function should be determined by examining
the pointer in the PlaceholderBuffer structure upon return and subtracting the original value of that
pointer. e resulting difference can be less than the maximum value returned by the CountMultiLine-
Text() function.

Any characters in the original text string designated as control characters by the Unicode standard do
not generate any output. ese characters never contribute any spacing in the slug layout, even if the
original font defines nonzero advance widths for them.

When a new line is started, it is placed at a distance below the previous line given by the product of the
font size and leading, as specified by the fontSize and textLeading fields of the LayoutData structure.
If paragraph attributes are enabled and the new line is the first line in a new paragraph, then the leading
is increased by the paragraphSpacing field of the LayoutData structure. If embedded format directives
are enabled, the leading and paragraph spacing values can be changed within a line of text, but the new
line spacing takes effect when the next line or paragraph is started.

LayoutMultiLineTextEx() function 201

LayoutMultiLineTextEx() function
e LayoutMultiLineTextEx() function generates the glyph indices and drawing positions for multiple
lines of text.

Prototype

int32 LayoutMultiLineTextEx(const CompiledText *compiledText,
 int32 fontCount,
 const FontDesc *fontDesc,
 int32 lineIndex,
 int32 lineCount,
 const LineData *lineDataArray,
 const Point2D& position,
 float maxSpan,
 uint8 *fontIndexBuffer,
 int32 *glyphIndexBuffer,
 Point2D *positionBuffer,
 Matrix2D *matrixBuffer,
 colorType *colorBuffer,
 PlaceholderBuffer *placeholderBuffer = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileStringEx() function.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of
the fontCount parameter.

lineIndex e zero-based index of the first line of text to build.

lineCount e number of lines of text to build.

lineDataArray A pointer to an array of LineData structures containing information about
each line of text. e lines of text to be built correspond to elements indexed
lineIndex through lineIndex + lineCount − 1 in this array.

position e x and y coordinates of the first glyph at the baseline of the first line of
text.

202 Programming Reference

maxSpan e maximum physical horizontal span of the text.

fontIndexBuffer A pointer to an array of integers that receives font indices. is parameter can
be nullptr, in which case no per-glyph font indices are returned. Otherwise,
this array must be at least as large as the glyph count returned by the
CountMultiLineTextEx() function.

glyphIndexBuffer A pointer to an array of integers that receives glyph indices. is array must
be at least as large as the glyph count returned by the
CountMultiLineTextEx() function.

positionBuffer A pointer to an array of Point2D structures that receives glyph indices. is
array must be at least as large as the glyph count returned by the
CountMultiLineTextEx() function.

matrixBuffer A pointer to an array of Matrix2D structures that receives glyph transforms.
is parameter can be nullptr, in which case no per-glyph transforms are
returned. Otherwise, this array must be at least as large as the glyph count
returned by the CountMultiLineTextEx() function.

colorBuffer A pointer to an array of Color4U or ColorRGBA structures that receives glyph
colors. is parameter can be nullptr, in which case no per-glyph colors are
returned. Otherwise, this array must be at least as large as the glyph count
returned by the CountMultiLineTextEx() function.

placeholderBuffer A pointer to a PlaceholderBuffer structure containing information about
where the output placeholder data is stored. is parameter can be nullptr,
in which case no placeholder data is generated.

Description
e LayoutMultiLineTextEx() function is an extended version of the LayoutMultiLineText()
function capable of handling multiple fonts through the mapping mechanism described in Section 4.6.
A call to the LayoutMultiLineText() function is internally forwarded to the LayoutMultiLine-
TextEx() function with the fontCount parameter set to 1, the fontDesc parameter set to the address of
a single FontDesc structure containing the font header with default scale and offset, and the fontIndex-
Buffer parameter set to nullptr.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileStringEx() function. e value of the fontCount parameter and the entries of the
array specified by the fontDesc parameter must be exactly the same values that were passed to the
fontCount and fontDesc parameters of the CompileStringEx() function.

Aer possible modification by the application, the information returned by the LayoutMultiLine-
TextEx() function can be passed to the AssembleSlugEx() function to generate vertex and triangle data.

LayoutMultiLineTextEx() function 203

e remaining parameters passed to the LayoutMultiLineTextEx() function have the same meanings
as the parameters with the same names passed to the LayoutMultiLineText() function. e additional
fontIndexBuffer parameter optionally points to an array that receives the index of the font used by
each glyph.

204 Programming Reference

LayoutSlug() function
e LayoutSlug() function generates the glyph indices, drawing positions, transformations, and colors
for a single line of text, or “slug”.

Prototype

int32 LayoutSlug(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 const FontHeader *fontHeader,
 const Point2D& position,
 int32 *glyphIndexBuffer,
 Point2D *positionBuffer,
 Matrix2D *matrixBuffer,
 colorType *colorBuffer,
 PlaceholderBuffer *placeholderBuffer = nullptr,
 Point2D *exitPosition = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

position e x and y coordinates of the first glyph at the baseline.

glyphIndexBuffer A pointer to an array of integers that receives glyph indices. is parameter
cannot be nullptr, and the array it points to must be at least as large as the
glyph count returned by the CountSlug() function.

positionBuffer A pointer to an array of Point2D structures that receives glyph positions. is
parameter cannot be nullptr, and the array it points to must be at least as
large as the glyph count returned by the CountSlug() function.

LayoutSlug() function 205

matrixBuffer A pointer to an array of Matrix2D structures that receives glyph transforms.
is parameter can be nullptr, in which case no per-glyph transforms are
returned. Otherwise, this array must be at least as large as the glyph count
returned by the CountSlug() function.

colorBuffer A pointer to an array of Color4U or ColorRGBA structures that receives glyph
colors. is parameter can be nullptr, in which case no per-glyph colors are
returned. Otherwise, this array must be at least as large as the glyph count
returned by the CountSlug() function.

placeholderBuffer A pointer to a PlaceholderBuffer structure containing information about
where the output placeholder data is stored. is parameter can be nullptr,
in which case no placeholder data is generated.

exitPosition A pointer to a Point2D structure that receives the x and y coordinates of the
new drawing position aer it has been advanced past the final glyph. is
parameter can be nullptr, in which case the updated position is not
returned.

Description
e LayoutSlug() function generates the glyph indices, drawing positions, transformations, and colors
for a single line of text, or “slug”. e text is processed in the same way that it is for the BuildSlug()
function. Aer possible modification by the application, the information returned by the LayoutSlug()
function can be passed to the AssembleSlug() function to generate vertex and triangle data.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileString() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e pointer passed to
the fontHeader parameter must be the same that was passed to the fontHeader parameter of the
CompileString() function.

Before the LayoutSlug() function can be called, the CountSlug() function must be called for the same
compiled string to determine the maximum amount of storage that the LayoutSlug() function will need
to write its data. e compiled string must be exactly the same for both functions to ensure that the
correct amount of storage can be allocated and that the data generated by the LayoutSlug() function
stays within the calculated limits.

e position parameter specifies the x and y coordinates of the le side of the first glyph at the baseline.
is is oen (0, 0) when the transformation matrix applied externally by the application includes an
object-space position.

e glyphIndexBuffer parameter points to an array into which glyph indices are written, and the
positionBuffer parameter points to an array into which glyph positions are written. Each glyph
position accounts for tracking, kerning, the x and y text offsets, and combining mark attachments. Glyph
indices and positions are always returned, and these two parameters cannot be nullptr.

206 Programming Reference

e matrixBuffer parameter optionally points to an array into which glyph transforms are written.
Each glyph transform accounts for the font size, font stretch, x and y text scales, and the text skew that
would be applied by the BuildSlug() function. e matrixBuffer parameter can be nullptr if this
information is not needed.

e colorBuffer parameter optionally points to an array into which glyph colors are written. e
colorBuffer parameter can be nullptr if this information is not needed.

e number of entries written to each array is always the same as the number of glyphs returned by the
CountSlug() function. e data written to the output buffers includes glyphs that do not have any
geometry, such as the glyph corresponding to the space character. Glyph effects and text decorations are
ignored and have do not affect the number of glyphs.

If placeholders are being used, the placeholderBuffer parameter points to a PlaceholderBuffer
structure containing the address of the storage into which placeholder information is written. Upon
return from the LayoutSlug() function, the PlaceholderBuffer structure is updated so that the
placeholderData field points to the next element past the data that was written. e actual number of
placeholders generated by the LayoutSlug() function should be determined by examining the pointer
in the PlaceholderBuffer structure upon return and subtracting the original value of that pointer. e
resulting difference can be less than the maximum value returned by the CountSlug() function.

If the exitPosition parameter is not nullptr, then the final drawing position is written to it. e final
drawing position corresponds to the position aer the advance width for the final glyph has been applied
along with any tracking that may be in effect.

Any characters in the original text string designated as control characters by the Unicode standard do
not generate any output. ese characters never contribute any spacing in the slug layout, even if the
original font defines nonzero advance widths for them.

LayoutSlugEx() function 207

LayoutSlugEx() function
e LayoutSlugEx() function generates the glyph indices, drawing positions, transformations, and
colors for a single line of text, or “slug”.

Prototype

int32 LayoutSlugEx(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 int32 fontCount,
 const FontDesc *fontDesc,
 const Point2D& position,
 uint8 *fontIndexBuffer,
 int32 *glyphIndexBuffer,
 Point2D *positionBuffer,
 Matrix2D *matrixBuffer,
 colorType *colorBuffer,
 PlaceholderBuffer *placeholderBuffer = nullptr,
 Point2D *exitPosition = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileStringEx() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of
the fontCount parameter.

position e x and y coordinates of the first glyph at the baseline.

fontIndexBuffer A pointer to an array of integers that receives font indices. is parameter can
be nullptr, in which case no per-glyph font indices are returned. Otherwise,
this array must be at least as large as the glyph count returned by the
CountSlugEx() function.

208 Programming Reference

glyphIndexBuffer A pointer to an array of integers that receives glyph indices. is parameter
cannot be nullptr, and the array it points to must be at least as large as the
glyph count returned by the CountSlugEx() function.

positionBuffer A pointer to an array of Point2D structures that receives glyph positions. is
parameter cannot be nullptr, and the array it points to must be at least as
large as the glyph count returned by the CountSlugEx() function.

matrixBuffer A pointer to an array of Matrix2D structures that receives glyph transforms.
is parameter can be nullptr, in which case no per-glyph transforms are
returned. Otherwise, this array must be at least as large as the glyph count
returned by the CountSlugEx() function.

colorBuffer A pointer to an array of Color4U or ColorRGBA structures that receives glyph
colors. is parameter can be nullptr, in which case no per-glyph colors are
returned. Otherwise, this array must be at least as large as the glyph count
returned by the CountSlugEx() function.

placeholderBuffer A pointer to a PlaceholderBuffer structure containing information about
where the output placeholder data is stored. is parameter can be nullptr,
in which case no placeholder data is generated.

exitPosition A pointer to a Point2D structure that receives the x and y coordinates of the
new drawing position aer it has been advanced past the final glyph. is
parameter can be nullptr, in which case the updated position is not
returned.

Description
e LayoutSlugEx() function is an extended version of the LayoutSlug() function capable of handling
multiple fonts through the mapping mechanism described in Section 4.6. A call to the LayoutSlug()
function is internally forwarded to the LayoutSlugEx() function with the fontCount parameter set to
1, the fontDesc parameter set to the address of a single FontDesc structure containing the font header
with default scale and offset, and the fontIndexBuffer parameter set to nullptr.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileStringEx() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e value of the
fontCount parameter and the entries of the array specified by the fontDesc parameter must be exactly
the same values that were passed to the fontCount and fontDesc parameters of the CompileStringEx()
function.

Aer possible modification by the application, the information returned by the LayoutSlugEx()
function can be passed to the AssembleSlugEx() function to generate vertex and triangle data.

LayoutSlugEx() function 209

e remaining parameters passed to the LayoutSlugEx() function have the same meanings as the
parameters with the same names passed to the LayoutSlug() function. e additional fontIndex-
Buffer parameter optionally points to an array that receives the index of the font used by each glyph.

210 Programming Reference

LineData structure
e LineData structure contains information about a line of text.

Fields

Field Description

int32
glyphCount

e number of glyphs belonging to the full line of text, including glyphs
corresponding to break characters and trimmed characters.

uint32
lineFlags

Flags indicating various properties of the line of text. See the description
for information about the individual bits.

float
lineSpan

e span of the line of text, in absolute units, excluding trimmed
characters at the end.

int32
trimTextLength

e length, in bytes, of the string composing the line of text aer
excluding trimmed characters at the end.

int32
fullTextLength

e length, in bytes, of the string composing the full line of text,
including trimmed characters at the end.

Description
e LineData structure contains information about the byte length and physical horizontal span of a
line of text. e LineData structure adds fields to the GlyphRange base structure.

e firstGlyph and lastGlyph fields of the GlyphRange base structure represent the first glyph at the
beginning of the line and the last glyph on the line corresponding to an untrimmed character. is range
can be empty if the line contains no untrimmed characters. e glyphCount field contains the total
number of glyphs belonging to the line beginning with the first glyph. e glyph count includes any
break character at the end of the line and all trimmed characters at the end of the line, but it excludes
the null terminator if one occurs at the end of the line. If the LineData structure does not correspond to
the final line in a block of text, then the first glyph on the next line of text is always given by the sum of
the firstGlyph and glyphCount fields.

e lineFlags field can be zero or the following value.

Value Description

kLineParagraphLast e line is the last line in a paragraph. If paragraph attributes are enabled
for multi-line text, this flag means that paragraph spacing is applied aer
this line and the next line is indented as the first line in a new paragraph.

LineData structure 211

e lineSpan field contains the horizontal span of the untrimmed text belonging to the line, in absolute
units. is is the total sum of the advance widths of the glyphs that fit between the le and right margins
of a paragraph.

e trimTextLength and fullTextLength fields contain the byte lengths in the original text string
corresponding to the trimmed and untrimmed glyphs belonging to the line.

LineData structures are typically generated by the library and are not usually created by the application.
A single LineData structure is generated by the BreakSlug() function, and multiple LineData
structures can be generated by the BreakMultiLineText() function. LineData structures are consumed
by the CountMultiLineText(), BuildMultiLineText(), and LayoutMultiLineText() functions.

212 Programming Reference

LocateSlug() function
e LocateSlug() function determines caret positioning information for specific byte locations within
a text string representing a single line of text, or “slug”.

Prototype

void LocateSlug(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 const FontHeader *fontHeader,
 int32 locationCount,
 const int32 *byteOffsetArray,
 LocationData *locationArray);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

locationCount e number of byte offsets stored in the array specified by the
byteOffsetArray parameter, and the number of LocationData entries
returned in the array specified by the locationArray parameter.

byteOffsetArray A pointer to an array of integers that each specify a byte location within the
original text string. e byte offsets in this array must be sorted in ascending
order.

locationArray A pointer to an array of LocationData structures that each receives caret
position and glyph information. is array must be large enough to hold
locationCount entries.

Description
e LocateSlug() function determines where an insertion caret should be placed for a set of byte
locations within a text string and returns a LocationData structure for each one.

LocateSlug() function 213

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileString() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e pointer passed to
the fontHeader parameter must be the same that was passed to the fontHeader parameter of the
CompileString() function.

If any of the byte offsets specified by the byteOffsetArray parameter precede the characters covered by
the range of glyphs specified by the glyphRange parameter, then the information returned for that byte
offset is the same as if the byte offset corresponded to the first character covered by the glyph range. If
any of the byte offsets are greater than the offset of the final character covered by the glyph range, then
the information returned for that byte offset is the same as if the byte offset corresponded to the first
character following the end of the glyph range.

If any of the byte offsets are greater than or equal to the length of the entire text string (and the end of
the string is included in the glyph range), then the information returned for that byte offset corresponds
to the terminator character, and the caret position corresponds to the end of the string.

Each byte offset should ideally specify the first byte in any multibyte UTF-8 encoding sequence.
However, in the case that any offset actually corresponds to a continuation byte, the information
returned is the same as if the offset corresponded to the first byte of the sequence.

214 Programming Reference

LocateSlugEx() function
e LocateSlugEx() function determines caret positioning information for specific byte locations
within a text string representing a single line of text, or “slug”.

Prototype

void LocateSlugEx(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 int32 fontCount,
 const FontDesc *fontDesc,
 int32 locationCount,
 const int32 *byteOffsetArray,
 LocationData *locationArray);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of
the fontCount parameter.

locationCount e number of byte offsets stored in the array specified by the
byteOffsetArray parameter, and the number of LocationData entries
returned in the array specified by the locationArray parameter.

byteOffsetArray A pointer to an array of integers that each specify a byte location within the
original text string. e byte offsets in this array must be sorted in ascending
order.

locationArray A pointer to an array of LocationData structures that each receives caret
position and glyph information. is array must be large enough to hold
locationCount entries.

LocateSlugEx() function 215

Description
e LocateSlugEx() function determines where an insertion caret should be placed for a set of byte
locations within a text string and returns a LocationData structure for each one. A call to the
LocateSlug() function is internally forwarded to the LocateSlugEx() function with the fontCount
parameter set to 1 and the fontDesc parameter set to the address of a single FontDesc structure
containing the font header with default scale and offset.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileStringEx() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e value of the
fontCount parameter and the entries of the array specified by the fontDesc parameter must be exactly
the same values that were passed to the fontCount and fontDesc parameters of the CompileStringEx()
function.

e remaining parameters passed to the LocateSlugEx() function have the same meanings as the
parameters with the same names passed to the LocateSlug() function.

216 Programming Reference

LocationData structure
e LocationData structure contains information about a caret location within a text string.

Fields

Field Description

Point2D
caretPosition

e caret position corresponding to the character in the text string at the
specified byte offset. is is usually the position on the baseline at which
the character’s glyph is drawn, but in the case that the glyph is a ligature
for multiple characters, the x coordinate is advanced in the glyph’s run
direction by the distance in the subglyphOffset field.

float
dualCaretOffset

e horizontal offset to the dual caret position in bidirectional text when
the caret position falls on the boundary between directional runs. is is
zero unless the main caret position falls at the beginning of a new run
direction, in which case it specifies the delta between the main caret x
coordinate and dual caret x coordinate at the ending position of the
previous run.

int32
glyphNumber

e number of glyphs preceding the glyph corresponding to the character
in the text string. is can be used to index into the compiledGlyph array
in the CompiledText structure.

uint32
subglyphIndex

e zero-based index within a ligature glyph, if applicable. is is always
zero for glyphs that correspond to only a single character.

float
subglyphOffset

e horizontal offset of the caret position within a ligature glyph.
Subtracting this value from the x coordinate of the caretPosition field
gives the beginning position of the entire glyph in its run direction. is
is always zero for glyphs that correspond to only a single character.

Description
e LocationData structure is returned by the LocateSlug() function, and it contains information
about the caret position corresponding to a specified byte offset within a text string.

e caretPosition field is usually the position on the baseline at which the character’s glyph is drawn,
relative to an origin at the beginning of the text string. e glyphNumber field contains the number of
preceding glyphs, and it can be used to index into the compiledGlyph array in the CompiledText
structure to access the glyph that would be drawn at the caret position.

In the case that the glyph is a ligature for multiple characters, the subglyphIndex field contains the
number of characters preceding the caret location within the ligature. e subglyphOffset field

LocationData structure 217

contains the additional horizontal offset of the caret position to account for its location within the
ligature. is offset is already included in the x coordinate of the caretPosition field, so subtracting it
gives the beginning position of the entire glyph in its run direction. e value of subglyphOffset is
positive or zero in a le-to-right run, and it is negative or zero in a right-to-le run.

218 Programming Reference

MakeCompactCompiledText() function
e MakeCompactCompiledText() function writes a compiled text string in a compact memory buffer
of minimum size.

Prototype

const CompiledText *MakeCompactCompiledText(const CompiledText *compiledText,
 void *compactStorage);

Parameters

Parameter Description

compiledText A pointer to a CompiledText structure containing a compiled string of text.

compactStorage A pointer to the memory buffer to which the compiled text data is written.

Description
e MakeCompactCompiledText() function creates a compact version of a compiled text string suitable
for long-term storage. e compiledText parameter must point to a CompiledText structure that was
previously returned by the CompileString() function. e information stored in that object is copied
to the memory buffer specified by the compactStorage parameter in a compact form, and a pointer to
that memory buffer is returned aer being cast to a pointer to a CompiledText structure. e return
value can be passed to any library function that accepts a CompiledText structure as a parameter.

Before calling the MakeCompactCompiledText() function, the application must call the GetCompact-
CompiledStorageSize() function to determine how large the memory buffer needs to be. It is the
application’s responsibility to allocate the memory buffer and release it when it’s no longer in use.

MeasureSlug() function 219

MeasureSlug() function
e MeasureSlug() function measures the physical horizontal span of a line of text, or “slug”.

Prototype

float MeasureSlug(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 const FontHeader *fontHeader,
 int32 trimCount = 0,
 const uint32 *trimArray = nullptr,
 float *trimSpan = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

trimCount e number of trim characters specified by the trimArray parameter.

trimArray A pointer to an array of trim characters with trimCount entries. e values in
this array are Unicode characters, and they must be sorted in ascending order.
is parameter can nullptr only if the trimCount parameter is 0.

trimSpan A pointer to a location to which the trimmed physical horizontal span of the
string is written. is parameter can be nullptr, in which case the trimmed
span is not returned.

Description
e MeasureSlug() function calculates the total physical span for a line of text and returns the
horizontal difference between the initial and final drawing positions for the set of glyphs that would be
generated for the text using the same font and layout state.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileString() function. A pointer to a GlyphRange structure may be passed to the

220 Programming Reference

glyphRange parameter to specify that only a subset of glyphs are to be processed. e pointer passed to
the fontHeader parameter must be the same that was passed to the fontHeader parameter of the
CompileString() function.

e return value is the physical horizontal span of the entire set of characters that were processed. If the
trimSpan parameter is not nullptr, then a possibly shorter span that excludes a set of specific characters
at the end of the string is written to the location that the trimSpan parameter points to. e set of
excluded characters is specified by the trimCount and trimArray parameters. If trimCount is not zero,
then the trimArray parameter must point to an array of Unicode characters having the number of
entries specified by trimCount. Values specified in this array typically include spaces and other
characters that do not generate any geometry.

Any characters in the original text string designated as control characters by the Unicode standard do
not contribute to the span measurement. ese characters never contribute any spacing in the slug
layout, even if the original font defines nonzero advance widths for them.

MeasureSlugEx() function 221

MeasureSlugEx() function
e MeasureSlugEx() function measures the physical horizontal span of a line of text, or “slug”.

Prototype

float MeasureSlugEx(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 int32 fontCount,
 const FontDesc *fontDesc,
 int32 trimCount = 0,
 const uint32 *trimArray = nullptr,
 float *trimSpan = nullptr);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileStringEx() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of the
fontCount parameter.

trimCount e number of trim characters specified by the trimArray parameter.

trimArray A pointer to an array of trim characters with trimCount entries. e values in
this array are Unicode characters, and they must be sorted in ascending order.
is parameter can nullptr only if the trimCount parameter is 0.

trimSpan A pointer to a location to which the trimmed physical horizontal span of the
string is written. is parameter can be nullptr, in which case the trimmed
span is not returned.

Description
e MeasureSlugEx() function is an extended version of the MeasureSlug() function capable of
handling multiple fonts through the mapping mechanism described in Section 4.6. A call to the

222 Programming Reference

MeasureSlug() function is internally forwarded to the MeasureSlugEx() function with the fontCount
parameter set to 1 and the fontDesc parameter set to the address of a single FontDesc structure
containing the font header with default scale and offset.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileStringEx() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e value of the
fontCount parameter and the entries of the array specified by the fontDesc parameter must be exactly
the same values that were passed to the fontCount and fontDesc parameters of the CompileStringEx()
function.

e remaining parameters passed to the MeasureSlugEx() function have the same meanings as the
parameters with the same names passed to the MeasureSlug() function.

PictureData structure 223

PictureData structure
e PictureData structure contains information about a specific picture.

Fields

Field Description

uint32
pictureFlags

Flags indicating various properties of the picture.

Box2D
canvasBox

e box defining the full area of the canvas for the picture.

Box2D
boundingBox

e box representing the bounding box of all geometry contained in the
picture.

int32
componentCount

e number of icon components making up the picture.

int32
componentDataOffset

e offset to the component data table.

Description
Each picture in an album has an associated PictureData structure that contains information about its
rendering and layout properties.

e following values can be combined (through logical OR) in the pictureFlags field.

Value Description

kPictureLinearFills e picture contains at least one fill that is defined entirely by linear
curves. e kRenderLinearCurves flag may be specified for the
GetShaderIndices() function to enable the shader optimization, but it is
not required.

kPictureStrokes e picture contains at least one stroke. e kRenderStrokes flag must be
specified for the GetShaderIndices() function in order to render the
picture. e kRenderStrokes flag is not optional, and it is not the case
that strokes simply will not be rendered without it.

kPictureGradients e picture contains at least one gradient. e kRenderGradients flag
should be specified for the GetShaderIndices() function in order to
render the gradients. e kRenderGradients flag is not strictly required,
and gradient fills will simply be rendered as solid colors without it.

224 Programming Reference

PlaceholderBuffer structure
e PlaceholderBuffer structure contains a pointer to the storage location where placeholder data is
written.

Fields

Field Description

PlaceholderData
*placeholderData

A pointer to the location where placeholder data structures are written.

Description
e PlaceholderBuffer structure contains information that tells several functions where to write the
placeholder data that they generate when placeholders are enabled.

When a build function returns, the placeholderData field of the PlaceholderBuffer structure has been
updated to point to the end of the data that was written, and the same PlaceholderBuffer structure can
be passed to additional function calls to append more data to the same buffer.

PlaceholderData structure 225

PlaceholderData structure
e PlaceholderData structure contains information about a placeholder that was encountered when
text was laid out by the BuildSlug() function, LayoutSlug() function, BuildMultiLineText()
function, or LayoutMultiLineText() function.

Fields

Field Description

int32
glyphNumber

e number of glyphs preceding the glyph corresponding to the
placeholder in the text string. is can be used to index into the
compiledGlyph array in the CompiledText structure.

int32
placeholderIndex

e index of the placeholder, given by the difference between the Unicode
value representing the placeholder and the placeholderBase field in the
LayoutData structure.

Point2D
placeholderPosition

e x and y coordinates of the placeholder's position where it occurs in
the text, in absolute units.

Description
When placeholders are being used as text is laid out, information about where they occurred is returned
through PlaceholderData structures. e BuildSlug(), LayoutSlug(), BuildMultiLineText(), and
LayoutMultiLineText() functions each accept an optional pointer to a PlaceholderBuffer structure
containing a pointer to the array of PlaceholderData structures allocated by the application. e index
of each placeholder and its position inside the laid-out text is stored in this array so the application
knows where to draw its own graphics in the space reserved by the placeholders.

226 Programming Reference

ResolveGlyph() function
e ResolveGlyph() function performs alternate substitution for a specific glyph.

Prototype

int32 ResolveGlyph(const FontHeader *fontHeader,
 int32 glyphIndex,
 uint32 alternateMask,
 uint32 styleIndex = 0);

Parameters

Parameter Description

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

glyphIndex e index of the glyph to resolve.

alternateMask A mask specifying the alternate substitution types that may be applied.

styleIndex e style set to be applied when the kAlternateStylistic bit is included in
the alternateMask parameter. is should be in the range 1–20.

Description
e ResolveGlyph() function determines whether an alternate should be substituted for a glyph, and if
so, returns the index of the substitute glyph. If no substitution is performed, then the return value is
equal to the glyphIndex parameter.

e glyphIndex parameter specifies the index of the glyph to resolve and is typically obtained with the
GetGlyphIndex() function for a particular Unicode character. e alternateMask parameter specifies
the alternate substitution types that may be applied, and it can be a combination (through logical OR)
of the bit values that can be set for the alternateMask field of the LayoutData structure. If the
kAlternateStylistic bit is included in the mask, then the styleIndex parameter specifies the style set
to be applied in the range 1–20. If the kAlternateStylistic bit is not set, then the styleIndex
parameter is ignored and should be set to zero.

If no alternate data was imported from the original font, then the ResolveGlyph() function always
returns the value specified by the glyphIndex parameter.

RunData structure 227

RunData structure
e RunData structure contains information about a directional run within a text string.

Fields

Field Description

float
runDirection

e relative run direction. is has a value of +1.0 for the primary writing
direction and −1.0 for the opposite writing direction.

Description
e CompiledText structure contains an array of RunData structures that contain information about
each distinct directional run within a text string.

228 Programming Reference

SetDefaultFillData() function
e SetDefaultFillData() function initializes all fields of the FillData structure to their default
values.

Prototype

void SetDefaultFillData(FillData *fillData);

Parameters

Parameter Description

fillData A pointer to a FillData structure to which the default values are written.

Description
e SetDefaultStrokeData() function initializes all fields of the FillData structure to the default
values specified in the following table.

Field Default Value

fillColor {0.0, 0.0, 0.0, 1.0}

fillRuleType kFillRuleNonzero

gradientType kGradientNone

gradientLine {0.0, 0.0, 0.0}

gradientCircle {0.0, 0.0, 0.0}

gradientColor[0] {0.0, 0.0, 0.0, 1.0}

gradientColor[1] {0.0, 0.0, 0.0, 1.0}

SetDefaultLayoutData() function 229

SetDefaultLayoutData() function
e SetDefaultLayoutData() function initializes all fields of the LayoutData structure to their default
values.

Prototype

void SetDefaultLayoutData(LayoutData *layoutData);

Parameters

Parameter Description

layoutData A pointer to a LayoutData structure to which the default values are written.

Description
e SetDefaultLayoutData() function initializes all fields of the LayoutData structure to the default
values specified in the following table.

Field Default Value

fontType 0

fontSize 16.0

fontStretch 1.0

textTracking 0.0

textSkew 0.0

textScale {1.0, 1.0}

textOffset {0.0, 0.0}

textColor.color[0] {0.0, 0.0, 0.0, 1.0}

textColor.color[1] {0.0, 0.0, 0.0, 1.0}

textColor.gradient[0] 0.0

textColor.gradient[1] 1.0

textColor.gradientFlag false

textAlignment kAlignmentLeft

230 Programming Reference

textLeading 1.2

paragraphSpacing 0.0

leftMargin 0.0

rightMargin 0.0

firstLineIndent 0.0

tabSize 64.0

tabRound 0.0

layoutFlags 0

renderFlags 0

geometryType kGeometryQuads

formatMask ~0 (all enabled)

sequenceMask kSequenceDefaultMask

alternateMask 0

styleIndex 0

scriptLevel 0

decorationFlag[] false (all entries)

spaceCount 0

spaceArray nullptr

placeholderBase 0x0F0000

placeholderCount 0

placeholderWidthArray nullptr

effectType kEffectNone

shadowOffset {0.0, 0.0}

shadowColor.color[0] {0.0, 0.0, 0.0, 1.0}

shadowColor.color[1] {0.0, 0.0, 0.0, 1.0}

shadowColor.gradient[0] 0.0

shadowColor.gradient[1] 1.0

SetDefaultLayoutData() function 231

shadowColor.gradientFlag false

outlineOffset {0.0, 0.0}

outlineColor.color[0] {0.0, 0.0, 0.0, 1.0}

outlineColor.color[1] {0.0, 0.0, 0.0, 1.0}

outlineColor.gradient[0] 0.0

outlineColor.gradient[1] 1.0

outlineColor.gradientFlag false

objectScale {1.0, 1.0}

objectOffset {0.0, 0.0}

clipLeft 0.0

clipRight 0.0

missingGlyphIndex 0

defaultLayoutData nullptr

232 Programming Reference

SetDefaultStrokeData() function
e SetDefaultStrokeData() function initializes all fields of the StrokeData structure to their default
values.

Prototype

void SetDefaultStrokeData(StrokeData *strokeData);

Parameters

Parameter Description

strokeData A pointer to a StrokeData structure to which the default values are written.

Description
e SetDefaultStrokeData() function initializes all fields of the StrokeData structure to the default
values specified in the following table.

Field Default Value

strokeWidth 1.0

strokeColor {0.0, 0.0, 0.0, 1.0}

strokeCapType kStrokeCapFlat

strokeJoinType kStrokeJoinBevel

miterLimit 4.0

dashCount 0

dashOffset 0.0

dashArray nullptr

SetValidationCallback() function 233

SetValidationCallback() function
e SetValidationCallback() function sets the function called when a validation error occurs.

Prototype

void SetValidationCallback(validationCallbackFunc callback,
 const void *cookie = nullptr);

Parameters

Parameter Description

callback A pointer to the callback function.

cookie An optional pointer to an application-defined data structure.

Description
e SetValidationCallback() function sets the function called when a validation error occurs to the
function specified by the callback parameter. is function must have the following prototype.

void ValidationCallbackFunc(const char *funcName,
 const char *message,
 void *cookie);

When the callback function is invoked, the funcName parameter points to a null-terminated string
containing the name of the Slug API function called when validation failed, and the message parameter
points to a null-terminated string containing the specific validation test that failed. e cookie
parameter passed to the callback function is the application-defined value that was originally passed to
the SetValidationCallback() function.

234 Programming Reference

SlugFileHeader structure
e SlugFileHeader structure contains general information about a font or album.

Fields

Field Description

uint32
resourceSignature

An internal signature for .slug files.

uint32
resourceVersion

e version of Slug that generated the .slug file.

uint32
resourceType

e type of Slug resource, either kResourceFont or kResourceAlbum.

uint32
resourceCount

e number of separate resources in the .slug file. is can be
greater than one for fonts, but it is always one for albums.

TextureType
curveTextureType

e format of the curve texture, which is either kTextureFloat16 or
kTextureFloat32.

Integer2D
curveTextureSize

e dimensions of the texture map containing the control points for
the quadratic Bézier curves.

uint32
curveCompressionType

e compression type applied to the curve texture map.

uint32
curveCompressedDataSize

e size of the compressed curve texture map data, in bytes.

int32
curveTextureOffset

e offset to the compressed curve texture map data, in bytes, from
the beginning of this header structure.

TextureType
bandTextureType

e format of the band texture, which is always kTextureUint16.

Integer2D
bandTextureSize

e dimensions of the texture map containing the multi-band Bézier
curve index data.

uint32
bandCompressionType

e compression type applied to the band texture map.

uint32
bandCompressedDataSize

e size of the compressed band texture map data, in bytes.

int32
bandTextureOffset

e offset to the compressed band texture map data, in bytes, from
the beginning of this header structure.

SlugFileHeader structure 235

Description
e SlugFileHeader structure contains information that is common to both fonts and albums. Every
.slug file begins with a SlugFileHeader structure beginning with the first byte of its contents. A pointer
to a FontHeader structure or AlbumHeader structure can be obtained by calling the GetFontHeader()
function or GetAlbumHeader() function.

236 Programming Reference

StrokeData structure
e StrokeData structure controls the options that determine the appearance of a stroked path.

Fields

Field Description

float
strokeWidth

e stroke width, in object space. Half of this width lies on each side of a
path.

ColorRGBA
strokeColor

e color of the stroke.

StrokeCapType
strokeCapType

e type of cap applied at the beginning and end of the stroke and on the
ends of dashes.

StrokeJoinType
strokeJoinType

e type of join applied between consecutive curves when their tangents
are not parallel and the miter limit is exceeded.

float
miterLimit

e minimum ratio of the miter width to the stroke width for which
consecutive curves are joined as specified by the strokeJoinType field
instead of a miter. If the miter limit is zero, then curves with non-parallel
tangents are always joined as specified by the strokeJoinType field.

int32
dashCount

e sum of the number of dash lengths and gap lengths contained in the
array specified by the dashArray field. is must be an even number less
than 256. If this is not a positive number, then no dashing is applied.

float
dashOffset

e length offset within the dash array at which the stroke begins. is is
ignored if the dashCount field is not a positive number.

const float
*dashArray

A pointer to an array of dash and gap lengths. e number of elements in
this array must be equal to the value of the dashCount field. Even
numbered entries specify dash lengths, and odd numbered entries specify
the gap lengths between dashes. is is ignored if the dashCount field is
not a positive number.

Description
e StrokeData structure controls the options that determine the appearance of a stroked path. e
fields of the StrokeData structure can be initialized to their default values by calling the SetDefault-
StrokeData() function.

StrokeData structure 237

e following values are the cap types that can be specified in the strokeCapType field.

Value Description

kStrokeCapFlat Strokes do not have caps.

kStrokeCapTriangle Strokes have triangular caps.

kStrokeCapSquare Strokes have square caps.

kStrokeCapRound Strokes have round caps.

e following values are the join types that can be specified in the strokeJoinType field.

Value Description

kStrokeJoinBevel Strokes are joined by beveled corners.

kStrokeJoinRound Strokes are joined by rounded corners.

238 Programming Reference

StrokeWorkspace structure
e StrokeWorkspace structure is used internally for temporary storage by the library functions that
generate geometry and texture data for strokes.

Description
e StrokeWorkspace structure serves as temporary storage space while data is being processed by the
Slug library functions that generate geometry and texture data for strokes. When the library is used in a
single-threaded context, there is no need to allocate and specify StrokeWorkspace structures because
the library can use its own internal storage. However, if these library functions are called from multiple
threads, then the application must ensure that a different StrokeWorkspace structure is specified for
each thread so that the library is safely reentrant.

StrokeWorkspace structures allocated by the application are passed to Slug library functions that need
them as the last parameter. Due to the large size of the StrokeWorkspace structures, they should not be
allocated on the stack, but only on the heap or as a static part of the program binary.

TestData structure 239

TestData structure
e TestData structure holds information about how a test position interacts with a line of text.

Fields

Field Description

bool
trailingHitFlag

A flag indicating whether the test position is greater than the center
position of the intersected glyph.

bool
rightToLeftFlag

A flag indicating whether the intersected glyph belongs to a right-to-le
run of text.

bool
subligatureFlag

A flag indicating that the caret position has been placed aer at least one,
but not all, of the characters composing a ligature glyph.

float
positionOffset

e distance between the beginning position of the intersected glyph and
the test position.

float
advanceWidth

e advance width of the intersected glyph. If the test position is outside
the text, then this is zero.

float
caretPosition

e caret position derived from the test position and run direction. If the
trailingHitFlag field is true, then the caret position follows the
intersected glyph.

int32
textLength

e length, in bytes, of the text preceding the caret position. If the
trailingHitFlag field is true, then this includes the characters to which
the intersected glyph corresponds.

int32
glyphNumber

e number of glyphs preceding the intersected glyph. is has the same
value regardless of whether the trailingHitFlag field is true.

Description
e TestData structure is used by the TestSlug() and TestSlugEx() functions to return information
about how a test position interacts a line of text.

240 Programming Reference

TestSlug() function
e TestSlug() function determines how a test position interacts with a single line of text, or “slug”.

Prototype

bool TestSlug(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 const FontHeader *fontHeader,
 float position,
 TestData *testData);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileString() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontHeader A pointer to the FontHeader structure retrieved with the GetFontHeader()
function for a particular .slug file.

position e horizontal position to test, relative to the beginning of the text.

testData A pointer to a TestData structure in which information about the test is
returned.

Description
e TestSlug() function determines which glyph in a line of text corresponds to a given test position
and calculates the appropriate position for an insertion caret. e text parameter should point to a null-
terminated string of characters encoded as UTF-8. e position parameter specifies the horizontal
position to be tested, relative to an origin placed at the beginning of the text. e testData parameter
specifies a pointer to a TestData structure that is filled out upon return.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileString() function. A pointer to a GlyphRange structure may be passed to the
glyphRange parameter to specify that only a subset of glyphs are to be processed. e pointer passed to
the fontHeader parameter must be the same that was passed to the fontHeader parameter of the
CompileString() function.

TestSlug() function 241

e TestSlug() function works in a symmetric manner with respect to the primary writing direction
of the text, as specified by the presence or absence of the kLayoutRightToLeft flag in the layoutFlags
field of the LayoutData structure. For text having a primary direction of le-to-right, the glyphs laid out
for the text fill the range [0, s), where s is the full span of the text. For text having a primary direction of
right-to-le, the glyphs fill the range (−s, 0]. If the position parameter falls inside the pertinent range,
then the return value of the TestSlug() function is true, and the TestData structure contains
information about the glyph that was hit.

e trailingHitFlag field of the TestData structure is false if the test position falls within the first
half of the glyph that was hit, and it is true otherwise. e rightToLeftFlag field is false if the glyph
is part of a le-to-right run of characters, and it is true otherwise. Whether the first half of a glyph
corresponds to the le side or right side depends on the directionality of the text for that glyph.

e positionOffset field of the TestData structure specifies the difference between the beginning of
the glyph that was hit and the test position. is is always a nonnegative value, and it measures from the
le side of a glyph belonging to le-to-right run and from the right side of a glyph belonging to a right-
to-le run.

e advanceWidth field of the TestData structure contains the advance width of the glyph that was hit.

e caretPosition field of the TestData structure is set to the position at which the insertion caret
should be placed based on the test position. If the trailingHitFlag field is false, then the caret
position is equal to the beginning position of the glyph that was hit, which is on the le for a le-to-
right run and on the right for a right-to-le run. If the trailingHitFlag field is true, then the caret
position is equal to the ending position of the glyph, which is offset from the beginning position by the
glyph’s advance width in the direction of the run to which it belongs.

If a glyph is followed by empty spacing due to a positive tracking value or a positive kerning adjustment
against the next glyph, then that spacing is considered to be part of the trailing side of the glyph. e
empty spacing does not affect the boundary between the first half and second half, but extends the
second half by the width of the spacing. When the caret position is placed aer a glyph, it is placed
before any empty spacing.

e textLength field of the TestData structure contains the number of bytes in the original text string
that correspond to the glyphs preceding the caret position. Consequently, this length includes the
character(s) for the glyph that was hit only if the trailingHitFlag field is true.

e glyphNumber field of the TestData structure contains the number of glyphs preceding the glyph
that was hit, which gives the index in the array of glyphs derived from the original text string. is value
does not depend on the trailingHitFlag field.

If the glyph that was hit is a ligature, then the TestSlug() function can determine whether the caret
position should be placed between two of the characters whose standalone glyphs were replaced by the
ligature glyph. When this happens, the subligatureFlag field of the TestData structure is set to true,
and the position in the caretPosition field falls somewhere in the middle of the ligature glyph. In this
case, the glyphNumber field is not affected, but the textLength field is adjusted to include only the
characters that precede the caret position, which is less than the total number of characters preceding

242 Programming Reference

the end of the ligature glyph. e trailingHitFlag field is set to true only if the test position precedes
the caret position.

If the test position given by the position parameter falls outside the range filled by glyphs, either
because the position falls beyond the last glyph specified by the glyphRange parameter or beyond the
null terminator, then the return value is false. In this case, the trailingHitFlag field is always false,
the rightToLeftFlag field reflects the primary writing direction specified in the LayoutData structure,
the subligatureFlag field is always false, the positionOffset field is always zero, and the
advanceWidth field is always zero. If the test position is less than zero for le-to-right text, or if it is
greater than zero for right-to-le text, then the caretPosition field is set to zero, the textLength field
is set to zero, and the glyphNumber field is set to zero. If the test position lies beyond the end of the span,
then the caretPosition field is set to the end of the span, the textLength field is set to the length of the
original text string corresponding to the glyphs specified by the glyphRange parameter or the full length
of the text in the case of a null terminator, and the glyphNumber field is set to one greater than the last
glyph in the range specified by the glyphRange parameter or the index of the null terminator.

TestSlugEx() function 243

TestSlugEx() function
e TestSlugEx() function determines how a test position interacts with a single line of text, or “slug”.

Prototype

bool TestSlugEx(const CompiledText *compiledText,
 const GlyphRange *glyphRange,
 int32 fontCount,
 const FontDesc *fontDesc,
 float position,
 TestData *testData);

Parameters

Parameter Description

compiledText A pointer to a CompiledText object returned by a preceding call to the
CompileStringEx() function.

glyphRange A pointer to a GlyphRange structure specifying the range of glyphs to process.
is parameter can be nullptr, in which case all of the glyphs stored in the
CompiledText object are processed.

fontCount e total number of fonts that may be utilized. is must be at least 1.

fontDesc A pointer to an array of FontDesc structures describing the fonts that may be
utilized. e number of elements in this array must be equal to the value of the
fontCount parameter.

position e horizontal position to test, relative to the beginning of the text.

testData A pointer to a TestData structure in which information about the test is
returned.

Description
e TestSlugEx() function is an extended version of the TestSlug() function capable of handling
multiple fonts through the mapping mechanism described in Section 4.6. A call to the TestSlug()
function is internally forwarded to the TestSlugEx() function with the fontCount parameter set to 1
and the fontDesc parameter set to the address of a single FontDesc structure containing the font header
with default scale and offset.

e compiledText parameter should be a pointer to a CompiledText structure returned by a preceding
call to the CompileStringEx() function. A pointer to a GlyphRange structure may be passed to the

244 Programming Reference

glyphRange parameter to specify that only a subset of glyphs are to be processed. e value of the
fontCount parameter and the entries of the array specified by the fontDesc parameter must be exactly
the same values that were passed to the fontCount and fontDesc parameters of the CompileStringEx()
function.

e remaining parameters passed to the TestSlugEx() function have the same meanings as the
parameters with the same names passed to the TestSlug() function.

TextureBuffer structure 245

TextureBuffer structure
e TextureBuffer structure holds the address, format, size, and current storage state of a curve or
band texture.

Fields

Field Description

void
*textureData

A pointer to the memory buffer where the texture is stored.

TextureType
textureType

e format of the texture. See the description for information about
possible values.

Integer2D
textureSize

e x and y dimensions of the texture, in texels. If the y size is greater
than one, then the x size must be 4096.

Integer2D
writeLocation

e x and y coordinates of the first unused texel in the texture.

Description
e TextureBuffer structure is used by functions that import icon data or create fills and strokes at run
time. e textureData and textureSize fields specify the location in memory and the dimensions of a
curve texture or band texture.

e following values are the formats that can be specified in the textureType field.

Value Description

kTextureDefault e texture uses the default format, which is kTextureFloat16 for curve
textures and kTextureUint16 for band textures.

kTextureFloat16 Each of the four channels of the texture contains a 16-bit float-point
value (curve textures only).

kTextureFloat32 Each of the four channels of the texture contains a 32-bit float-point
value (curve textures only).

kTextureUint16 Each of the four channels of the texture contains a 16-bit unsigned
integer (band textures only).

e writeLocation field holds the coordinates of the first unused texel in the texture in a top-to-bottom,
le-to-right order. It should initially be set to (0, 0), and it is updated by the functions that generate
texture data so that information about multiple icons or paths and be stored in the same textures maps.

246 Programming Reference

Triangle structure
e Triangle16 and Triangle32 structures contains vertex indices for a triangle.

Triangle16 Fields

Field Description

uint16
index[3]

e three 16-bit vertex indices used by the triangle.

Triangle32 Fields

Field Description

Uint32
index[3]

e three 32-bit vertex indices used by the triangle.

Description
Triangles generated by building functions can be stored as Triangle16 or Triangle32 structures, which
simply hold three vertex indices that are either 16-bit or 32-bit unsigned integers. Triangles are generated
by the building functions that write data into buffers specified by one or more GeometryBuffer
structures. e indexType field of the GeometryBuffer structure specifies whether 16-bit or 32-bit
vertex indices are written.

e Triangle type is an alias for the Triangle16 type.

UpdateLayoutData() function 247

UpdateLayoutData() function
e UpdateLayoutData() function updates the layout state to account for embedded format directives
in a given text string.

Prototype

void UpdateLayoutData(const LayoutData *layoutData,
 const char *text,
 int32 maxLength,
 LayoutData *exitLayoutData);

Parameters

Parameter Description

layoutData A pointer to a LayoutData structure containing the initial text layout state.

text A pointer to a text string. e characters must be encoded as UTF-8. If the
maxLength parameter is −1, then this string must be null terminated.

maxLength e maximum number of bytes to be processed in the string. If this is set to
−1, then the string must be null terminated, and the entire string is processed.

exitLayoutData A pointer to a LayoutData structure to which the updated text layout state is
written. It is safe to specify the same pointer for both the layoutData and
exitLayoutData parameters. is parameter cannot be nullptr.

Description
e UpdateLayoutData() function processes any embedded format directives in a given text string and
returns a modified LayoutData structure.

e initial format state is specified by the layoutData parameter, and the updated format state is written
to the location pointed to by the exitLayoutData parameter. It is safe to specify the same pointer for
both the layoutData and exitLayoutData parameters. e kLayoutFormatDirectives bit must be set
in the layoutFlags field of the LayoutData structure specified by the layoutData parameter for any
changes to be made to the layout state.

e text parameter should point to a string of characters encoded as UTF-8. e maxLength parameter
specifies the maximum number of bytes to be searched for embedded format directives within the string.
All directives beginning within this number of bytes are processed, even if the complete directive
extends beyond the limit. If a null terminator is encountered before the number of bytes specified by
maxLength has been processed, then processing stops at the null terminator. If maxLength is set to −1,
then the string must be null terminated, and the entire string is processed.

248 Programming Reference

Vertex structure
e Vertex4U and VertexRGBA structures contains the data for each vertex used to render a glyph, icon,
fill, or stroke.

Vertex4U Fields

Field Description

Vector4D
position

e x and y components contain the object-space position of the vertex. e z and
w components contain a normal vector used for dynamic dilation.

Vector4D
texcoord

e x and y components contain the vertex coordinates in em space. e z and w
components contain internal information about the data location and band
counts needed by the Slug shaders.

Vector4D
jacobian

is attribute contains the 2×2 inverse Jacobian matrix relating em-space
derivatives to object-space derivatives.

Vector4D
banding

is attribute contains the horizontal and vertical band transforms needed by the
Slug shaders.

Color4U
color

is attribute contains the linear RGBA color at the position of the vertex.

VertexRGBA Fields

Field Description

Vector4D
position

e x and y components contain the object-space position of the vertex. e z and
w components contain a normal vector used for dynamic dilation.

Vector4D
texcoord

e x and y components contain the vertex coordinates in em space. e z and w
components contain internal information about the data location and band
counts needed by the Slug shaders.

Vector4D
jacobian

is attribute contains the 2×2 inverse Jacobian matrix relating em-space
derivatives to object-space derivatives.

Vector4D
banding

is attribute contains the horizontal and vertical band transforms needed by the
Slug shaders.

ColorRGBA
color

is attribute contains the linear RGBA color at the position of the vertex.

Vertex structure 249

Description
e input to the Slug vertex shader consists of a 2D object-space position, a 2D normal vector, 2D texture
coordinates corresponding to the vertex coordinates in em space, internal data location information,
four floating-point values holding a Jacobian matrix, four floating-point values holding the band
transforms, and a 32-bit linear RGBA color. is information is encapsulated in a vertex structure that
is consumed directly by the GPU. Vertices are generated by the building functions that write data into
buffers specified by one or more GeometryBuffer structures.

e fields of the Vertex4U or VertexRGBA structure correspond to the five interleaved vertex attribute
arrays consumed by the vertex shader. e byte offsets, number of components, and component type
for each attribute array are listed in the following table. ese are the values that should be specified to
the rendering API. e number of bytes occupied by a single vertex is either 68 or 80, equal to either
sizeof(Vertex4U) or sizeof(VertexRGBA), and this should be specified as the vertex array stride.

Array Offset (bytes) Components Component Type

position 0 4 32-bit floating-point

texcoord 16 4 32-bit floating-point

jacobian 32 4 32-bit floating-point

banding 48 4 32-bit floating-point

color 64 4 8-bit unsigned integer (Vertex4U)
or 32-bit floating-point (VertexRGBA)

Whether vertices contain a color with 8-bit unsigned integer components or 32-bit floating-point
components is specified by the vertexType field of the GeometryBuffer structure.

e Vertex type is an alias for the Vertex4U type.

 251

6
Format Directives

Slug has the ability to recognize special format directives embedded in the text strings that it processes.
ese directives allow properties of the text, such as the size, color, or underlining state, to be changed
dynamically as a line of text is laid out. Embedded format directives are enabled by setting the
kLayoutFormatDirectives bit in the layoutFlags field of the LayoutData structure.

An embedded list of format directives begins with the two-character sequence {# and ends with the
closing brace }. Each directive inside these delimiters has the form directive(params), where params
lists the parameters that apply to the directive. Multiple format directives may be issued at once by
separating the directives with semicolons. For example, the following pair of directives sets the font size
to 24 and the text color to bright red.

{#size(24);color(255,0,0)}

Boolean, integer, and floating-point values accepted by format directives are parsed using the OpenDDL
syntax. (See openddl.org.) Whitespace inside format directives is allowed.

When format directives are enabled, the text making up the directives themselves is treated as if it does
not exist for the purposes of rendering and text layout calculations. If format directives are disabled,
then any braced sequences of format directives appearing in a text string are rendered normally as if
they had no meaning.

Every format directive can masked off by clearing bits in the formatMask field of the LayoutData
structure. is can be useful for allowing only a subset of format directives to be applied in text that was
entered by the user. For example, an application may want to allow the color to be changed in a player
name entered by the user, but not other properties such as the font size, scale, or skew. When format
directives are generally enabled by the kLayoutFormatDirectives bit, but a specific type of directive is
masked off, that directive is still consumed by text processing functions, but it has no effect.

http://openddl.org/

252 Format Directives

e following tables list the format directives recognized by Slug.

Directive Description

font(value) Set the font type to value, where value is a 32-bit unsigned
integer.

size(value) Set the font size to value in absolute units, where value is a
floating-point number. Ignored if value is not greater than
zero.

stretch(value) Set the text stretch to value, where value is a floating-point
number. Ignored if value is not greater than zero.

track(value) Set the text tracking to value in em units, where value is a
floating-point number.

skew(value) Set the text skew to value, where value is a floating-point
number. Positive values skew to the right, and negative values
skew to the le.

scale(x,y) Set the text scale to (x, y), where x and y are floating-point
numbers. e y component may be omitted, in which case it is
set equal to the x component. Ignored if either x or y is not
greater than zero.

offset(x,y) Set the text offset to (x, y) in em units, where x and y are
floating-point numbers. Positive values offset right and upward,
and negative values offset le and downward.

under(value) Set the underline decoration state to value, where value is
either true or false. Ignored if the font does not contain
underline information.

strike(value) Set the strikethrough decoration state to value, where value is
either true or false. Ignored if the font does not contain
strikethrough information.

script(value) Set the transform-based script state to value, where value is an
integer in the range [−3, 3]. If value is 0, then the text scale and
text offset states are set to the identity transform. If value is
positive, then the superscript scale and offset are applied value
times. If value is negative, then the subscript scale and offset
are applied value times. Ignored if value is out of range or the
font does not contain transform-based script information.

Format Directives 253

left() Set the text alignment to le. e new alignment takes effect at
the beginning of the next line.

right() Set the text alignment to right. e new alignment takes effect
at the beginning of the next line.

center() Set the text alignment to center. e new alignment takes effect
at the beginning of the next line.

just(value) Set the full justification state to value, where value is either
true or false.

lead(value) Set the leading to value in em units, where value is a floating-
point number. e new leading takes effect at the beginning of
the next line.

pspace(value) Set the paragraph spacing to value in em units, where value is
a floating-point number.

margin(left,right) Set the le and right paragraph margins to left and right in
absolute units. e right margin may be omitted, in which case
it is set to the same value as the le margin.

indent(value) Set the paragraph first-line indent to value in absolute units,
where value is a floating-point number.

tab(value) Set the tab size to value in absolute units, where value is a
floating-point number. Ignored if value is not greater than
zero.

kern(value) Set the kerning state to value, where value is either true or
false.

mark(value) Set the combining mark positioning state to value, where
value is either true or false.

decomp(value) Set the decompose state to value, where value is either true or
false.

seq(value) Set the sequence replacement state to value, where value is
either true or false.

alt(value) Set the alternate substitution state to value, where value is
either true or false.

lay(value) Set the color layer state to value, where value is either true or
false.

254 Format Directives

laymul(value) Set the layer multiplied by text color state to value, where
value is either true or false.

grid(value) Set the grid positioning state to value, where value is either
true or false.

color(red,green,blue,alpha) Set the primary text color to (red, green, blue, alpha), where
each component is an integer in the range [0, 255]. e red,
green, and blue components are specified in the sRGB color
space, and the alpha component is linear. e alpha component
may be omitted, in which case it is 255 by default. Ignored if
any component is out of range.

color2(red,green,blue,alpha) Set the secondary text color to (red, green, blue, alpha) using
the same format as the primary color when specified with the
color directive. e secondary text color is used only when
gradients are enabled.

colorf(red,green,blue,alpha) Set the primary text color to (red, green, blue, alpha), where
each component is a floating-point value. All components are
specified in linear space. e alpha component may be omitted,
in which case it is 1.0 by default.

colorf2(red,green,blue,alpha) Set the secondary text color to (red, green, blue, alpha) using
the same format as the primary color when specified with the
colorf directive. e secondary text color is used only when
gradients are enabled.

gcoord(y1,y2) Set the gradient coordinates to y1 and y2. ese are the
distances above the baseline at which the gradient is equal to
the primary and secondary color, respectively. Negative values
are allowed.

grad(value) Set the gradient state to value, where value is either true or
false.

shadow_color
(red,green,blue,alpha)

Set the primary shadow color to (red, green, blue, alpha),
where each component is an integer in the range [0, 255]. e
red, green, and blue components are specified in the sRGB
color space, and the alpha component is linear. e alpha
component may be omitted, in which case it is 255 by default.
Ignored if any component is out of range.

Format Directives 255

shadow_color2
(red,green,blue,alpha)

Set the secondary shadow color to (red, green, blue, alpha)
using the same format as the primary color when specified with
the shadow_color directive. e secondary shadow color is
used only when shadow gradients are enabled.

shadow_colorf
(red,green,blue,alpha)

Set the primary shadow color to (red, green, blue, alpha),
where each component is a floating-point value. All
components are specified in linear space. e alpha component
may be omitted, in which case it is 1.0 by default.

shadow_colorf2
(red,green,blue,alpha)

Set the secondary shadow color to (red, green, blue, alpha)
using the same format as the primary color when specified with
the shadow_colorf directive. e secondary shadow color is
used only when shadow gradients are enabled.

shadow_gcoord(y1,y2) Set the shadow gradient coordinates to y1 and y2. ese are the
distances above the baseline at which the gradient is equal to
the primary and secondary color, respectively. Negative values
are allowed.

shadow_grad(value) Set the shadow gradient state to value, where value is either
true or false.

outline_color
(red,green,blue,alpha)

Set the primary outline color to (red, green, blue, alpha),
where each component is an integer in the range [0, 255]. e
red, green, and blue components are specified in the sRGB
color space, and the alpha component is linear. e alpha
component may be omitted, in which case it is 255 by default.
Ignored if any component is out of range.

outline_color2
(red,green,blue,alpha)

Set the secondary outline color to (red, green, blue, alpha)
using the same format as the primary color when specified with
the outline_color directive. e secondary outline color is
used only when outline gradients are enabled.

outline_colorf
(red,green,blue,alpha)

Set the primary outline color to (red, green, blue, alpha),
where each component is a floating-point value. All
components are specified in linear space. e alpha component
may be omitted, in which case it is 1.0 by default.

outline_colorf2
(red,green,blue,alpha)

Set the secondary outline color to (red, green, blue, alpha)
using the same format as the primary color when specified with
the outline_colorf directive. e secondary outline color is
used only when outline gradients are enabled.

256 Format Directives

outline_gcoord(y1,y2) Set the outline gradient coordinates to y1 and y2. ese are the
distances above the baseline at which the gradient is equal to
the primary and secondary color, respectively. Negative values
are allowed.

outline_grad(value) Set the outline gradient state to value, where value is either
true or false.

reset() Reset all format state to the default values given by the layout
data referenced by the defaultLayoutData field of the
LayoutData structure. If the defaultLayoutData field is
nullptr, then use the initial values passed to an API function
in the LayoutData structure.

When sequence replacement is not disabled by the kLayoutSequenceDisable bit in the layoutFlags
field of the LayoutData structure, the following format directives can be used to control what types of
sequences are replaced.

Directive Description

comp(value) Set the glyph composition state to value, where value is either true or false.

slig(value) Set the standard ligatures state to value, where value is either true or false.

rlig(value) Set the required ligatures state to value, where value is either true or false.

dlig(value) Set the discretionary ligatures state to value, where value is either true or false.

hlig(value) Set the historical ligatures state to value, where value is either true or false.

afrc(value) Set the alternative fractions state to value, where value is either true or false.

Format Directives 257

When alternate substitution is not disabled by the kLayoutAlternateDisable bit in the layoutFlags
field of the LayoutData structure, the following format directives can be used to control what types of
alternates are substituted.

Directive Description

style(value) Set the stylistic alternates state to value, where value is an integer in the
range [0, 20]. If value is nonzero, stylistic alternates are enabled, and they
use the set specified by value. If value is zero, stylistic alternates are
disabled. Ignored if value is out of range.

historical(value) Set the historical alternates state to value, where value is either true or
false.

smallcap(value) Set the lowercase small caps state to value, where value is either true or
false.

capsmall(value) Set the uppercase small caps state to value, where value is either true or
false.

titling(value) Set the titling caps state to value, where value is either true or false.

unicase(value) Set the unicase state to value, where value is either true or false.

caseform(value) Set the case-sensitive forms state to value, where value is either true or
false.

slashzero(value) Set the slashed zero state to value, where value is either true or false.

hyphenminus(value) Set the hyphen minus state to value, where value is either true or false.

frac(value) Set the fraction state to value, where value is either true or false.

lining(value) Set the lining figures state to value, where value is either true or false. If
value is true, then the old-style figures state is disabled.

oldstyle(value) Set the old-style figures state to value, where value is either true or
false. If value is true, then the lining figures state is disabled.

tabfig(value) Set the tabular figures state to value, where value is either true or false.
If value is true, then the proportional figures state is disabled.

propfig(value) Set the proportional figures state to value, where value is either true or
false. If value is true, then the tabular figures state is disabled.

sub(value) Set the subscript state to value, where value is either true or false. If
value is true, then the superscript, scientific inferiors, and ordinals states
are disabled.

258 Format Directives

sup(value) Set the superscript state to value, where value is either true or false. If
value is true, then the subscript, scientific inferiors, and ordinals states
are disabled.

inf(value) Set the scientific inferiors state to value, where value is either true or
false. If value is true, then the subscript, superscript, and ordinals states
are disabled.

ord(value) Set the ordinals state to value, where value is either true or false. If
value is true, then the subscript, superscript, and scientific inferiors states
are disabled.

dtls(value) Set the dotless glyph state to value, where value is either true or false.

 259

7
Font Conversion

Slug includes a command-line tool called slugfont that reads files in both the TrueType and PostScript
flavors of the OpenType format and converts them to the Slug font format. Every font to be used with
Slug must first go through this conversion process.

e syntax for the slugfont tool is as follows:

slugfont inputfile -o outputfile options

e inputfile must be an OpenType font with the .ttf or .otf extension, a font collection with the
.ttc or .otc extension, or an OpenVEX file with the .ovex extension. e outputfile would normally
have the .slug extension.

Options can be specified with the switches listed in the following table.

Switch Description

-f index e index of the font to import from a collection in which
glyph data is not shared among fonts. e value of index
must be less than the number of fonts contained in the
collection. is is zero by default.

-g ovexfile Generate an OpenVEX file with the name given by
ovexfile containing the entire font that was read from the
input file. is is a valid switch for all input formats,
including OpenVEX itself.

-compress
-no-compress

Turn output compression on/off. is is on by default.

-poly
-no-poly

Turn bounding polygon generation on/off. is is on by
default.

260 Font Conversion

-contours
-no-contours

Turn contour data generation on/off. is is off by default.

-kern
-no-kern

Turn kerning data import on/off. is is on by default.

-mark
-no-mark

Turn combining mark data import on/off. is is on by
default.

-sequence
-no-sequence

Turn sequence replacement data import on/off. is is on
by default.

-alternate
-no-alternate

Turn alternate substitution data import on/off. is is on by
default.

-layer
-no-layer

Turn color layer data import on/off. is is on by default.

-times-lig Enables Times ligature promotion. When enabled, this
reclassifies discretionary ligatures as standard ligatures.
is is off by default.

-subscript-xscale scale Set the transform-based subscript x scale to scale. If scale
is not greater than zero, or if this switch is not specified,
then the default subscript x scale defined by the input font
is used.

-subscript-yscale scale Set the transform-based subscript y scale to scale. If scale
is not greater than zero, or if this switch is not specified,
then the default subscript y scale defined by the input font
is used.

-subscript-xoffset offset Set the transform-based subscript x offset, in em units, to
offset. If this switch is not specified, then the default
subscript x offset defined by the input font is used.

-subscript-yoffset offset Set the transform-based subscript y offset, in em units, to
offset. If this switch is not specified, then the default
subscript y offset defined by the input font is used.

-superscript-xscale scale Set the transform-based superscript x scale to scale. If
scale is not greater than zero, or if this switch is not
specified, then the default superscript x scale defined by the
input font is used.

Font Conversion 261

-superscript-yscale scale Set the transform-based superscript y scale to scale. If
scale is not greater than zero, or if this switch is not
specified, then the default superscript y scale defined by the
input font is used.

-superscript-xoffset offset Set the transform-based superscript x offset, in em units, to
offset. If this switch is not specified, then the default
superscript x offset defined by the input font is used.

-superscript-yoffset offset Set the transform-based superscript y offset, in em units, to
offset. If this switch is not specified, then the default
superscript y offset defined by the input font is used.

-underline
-no-underline

Turn underline glyph synthesis on/off. is is on by default.

-underline-size size Set the underline stroke size, in em units, to size. If size is
not greater than zero, or if this switch is not specified, then
the default underline size defined by the input font is used.

-underline-position position Set the em-space y position of the bottom of the underline
stroke to position. If this switch is not specified, then the
default underline position defined by the input font is used.

-strikethrough
-no-strikethrough

Turn strikethrough glyph synthesis on/off. is is on by
default.

-strikethrough-size size Set the strikethrough stroke size, in em units, to size. If
size is not greater than zero, or if this switch is not
specified, then the default strikethrough size defined by the
input font is used.

-strikethrough-position position Set the em-space y position of the bottom of the
strikethrough stroke to position. If this switch is not
specified, then the default strikethrough position defined
by the input font is used.

-poly-vertex-count count Set the maximum number of vertices generated for a
glyph’s bounding polygon to count. If nonzero, the value of
count is clamped to the range 4–6. If this switch is not
specified, then the default value is 4. is is used only if the
bounding polygon generation is turned on.

262 Font Conversion

-poly-edge-factor factor Set the interior edge cost factor for a glyph’s bounding
polygon to factor. If this switch is not specified, then the
default value is 1.0. is is used only if the bounding
polygon generation is turned on.

-max-band-count count Set the maximum number of horizontal and vertical bands
to count. e value of count is clamped to the range 1–32.
If this switch is not specified, then the default value is 32.
Lower values require less storage in the band texture, but
higher values produce better rendering performance.

-outline size Set the outline effect size, in em units, to size. If size is
greater than zero, then the outline effect is turned on.
Otherwise the outline effect is turned off. is is off by
default.

-miter limit Set the miter limit for the outline effect to limit. e value
of limit is the ratio of the miter length to the outline effect
size, and it is clamped to a minimum value of 1.0. is is
used only if the outline effect is turned on.

-bevel Set the join style for the outline effect to beveled corners,
which is the default style. is is used only if the outline
effect is turned on.

-round Set the join style for the outline effect to rounded corners.
is is used only if the outline effect is turned on.

Character Ranges
Many fonts contain glyphs for far more characters than are needed by an application, and including
them all can waste space. Ranges of Unicode characters can be included or excluded from a font during
the import process by using the following switches:

-range(begin,end)
-no-range(begin,end)

e values of begin and end are integers between 0 and 0x10FFFF. No whitespace is allowed. Each value
may be expressed in decimal, hex, octal, or binary. e exact syntax is defined by the rules for integers
in the OpenDDL language. (See openddl.org.)

All of the -range switches are processed before all of the -no-range switches, regardless of their order
on the command line. If no -range switches are specified, then the following ranges are included by
default:

http://openddl.org/

Font Conversion 263

 (0x000020,0x00007E)
 (0x0000A0,0x00D7FF)
 (0x00E000,0x00FFFD)
 (0x010000,0x10FFFF)

is includes all characters currently defined by Unicode. e excluded ranges correspond to control
characters and UTF-16 surrogate pairs that do not have associated glyphs.

If at least one -range switch is specified, then the included ranges are all of those specified by the -range
switches plus the ranges (0x00020,0x0007E), which is the Basic Latin block, and (0x000A0,0x000FF),
which is the Latin-1 Supplement block.

Aer all of the included characters have been established, the -no-range switches are processed to
remove unwanted character ranges.

As an example, the following command generates a font containing the Latin Extended-A block, the
Latin Extended-B block, and the Combining Diacritical Marks block in addition to the default Basic
Latin and Latin-1 Supplement blocks.

slugfont arial.ttf -o arial.slug -range(0x100,0x24F) -range(0x300,0x36F)

A range may include characters that don’t have glyphs in the font. ose characters are simply skipped.

Glyph Processing
As a glyph is imported, quadratic Bézier curves are generated for each contour defining the shape of the
glyph. If a contour has fewer than three control points, then it is deleted. If a quadratic curve is
degenerate because its endpoints are equal, then it is deleted. Each cubic curve belonging to a PostScript
outline is approximated by one or more quadratic curves that preserve positions and tangents at the
original endpoints and at critical points that occur inside the curve.

Color Layers
e slugfont tool recognizes multicolor glyphs that use the layered vector graphics mechanism
implemented by the 'COLR' and 'CPAL' tables in the OpenType format. If color layer data import is
enabled (which is the default), then color layers defined by these tables for specific glyphs in the font are
imported in addition to an ordinary monochrome glyph. (Note, however, that some fonts do not include
monochrome versions of multicolor glyphs.) Glyphs having multiple color layers are rendered as
multicolor glyphs unless the kLayoutLayerDisable flag is specified in the layoutFlags field of the
LayoutData structure.

Some fonts use entirely different formats and methods to define multicolor glyphs, but these are not
supported by Slug. In particular, fonts containing pixel images defined by the 'CBDT' or 'SBIX' tables
cannot be used with Slug because they are not based on vector graphics.

264 Font Conversion

Glyph Contours
By default, a .slug file does not contain enough information to retrieve the contours of a glyph despite
the fact that the curve texture contains all of the Bézier curves. e data is organized in such a way that
it is most efficient to access Bézier curves in thin horizontal and vertical bands inside the Slug pixel
shaders. If the -contours switch is specified on the slugfont command line, then additional
information about glyph contours is included in the output .slug file, and this allows the GetGlyph-
ContourData() function to extract the contours for any particular glyph.

Cap Height and Ex Height
When converted to the Slug format, all fonts contain cap and ex height information that can be accessed
by passing the key kFontKeyHeight to the GetFontKeyData() function. Every TrueType font is supposed
to contain this information, but if the original font does not for some reason, or if the height values are
zero, then it is inferred from the heights of the uppercase letter H and the lowercase letter x, as
recommended by the OpenType specification.

Subscripts and Superscripts
Every TrueType font is supposed to contain information about the preferred scale and offset for
transform-based subscripts and superscripts. By default, these values are imported to the Slug format
unchanged, but they can be individually overridden by using the appropriate command-line switches.
e values that are ultimately used during the import process can be retrieved from the Slug font by
calling the GetFontKeyData() function with the keys kFontKeySubscript and kFontKeySuperscript.
Because the amount of additional data created for subscript and superscript transforms is very small,
there is ordinarily no reason to disable it.

If the original font does not contain subscript and superscript transform data for some reason, then the
x and y scales for both are set to 0.65, and the x offset for both is set to zero. e y offset for subscripts is
set to −0.15 em, and the y offset for superscripts is set to 0.45 em.

Decorations
When underline and strikethrough are enabled (which is the default), a small amount of extra data is
added to the curve and band texture data for the font, and it is used to render the strokes associated with
these decorations. e exact increase in the size of the uncompressed texture data is 104 bytes per
decoration.

Every TrueType font is supposed to contain information about the preferred position and size of the
underline and strikethrough strokes. By default, these values are imported to the Slug format unchanged,
but they can be individually overridden by using the appropriate command-line switches. e values
that are ultimately used during the import process can be retrieved from the Slug font by calling the
GetFontKeyData() function with the keys kFontKeyUnderline and kFontKeyStrikethrough. Because
the amount of additional data created for underline and strikethrough decorations is very small, there
is ordinarily no reason to disable them.

Font Conversion 265

If the original font does not contain underline and strikethrough position and size information for some
reason, then the size of both is set to 0.05 em, the position of the underline is set to −0.1 em, and the
position of the strikethrough is set to 0.1746 em, as recommended by the OpenType specification.

Bounding Polygons
When bounding polygon generation is enabled, the -poly-vertex-count and -poly-edge-factor
switches can be used to control the number of vertices a polygon can have and the cost of interior edges.

e maximum number of polygon vertices can be 4, 5, or 6. Polygons with higher numbers of vertices
require significantly more computation during the import process, but they produce tighter boundaries
that can lead to better rendering performance for the font. If zero is specified as the maximum number
of vertices, then it is as if the -no-poly switch had been specified.

e edge factor affects the calculation that determines when a polygon with fewer vertices is preferred
over another polygon with more vertices when considering the cost of interior edges with the polygon’s
optimal triangulation. A larger edge factor means that a polygon with more vertices would need to have
a smaller overall area in order to be chosen over a polygon with fewer vertices. e edge factor can be
zero, and this means that the polygon with the smallest area is chosen without regard for the cost of
interior edges.

For more information about bounding polygons, see Section 4.14.

Outline Effect
If the -outline option is specified on the command line, then two sets of geometric data are generated
for each glyph, one having the ordinary shape defined by the font, and the other having an expanded
outline. is data is necessary in order to render the glyph outline effect, but it roughly doubles the file
size of a font.

e -miter, -round, and -bevel switches control how geometry is generated at corners in the expanded
outline. e value specified for the miter limit is the ratio of the miter length to the outline effect size,
and it must be at least 1.0. When the miter limit is exceeded where two Bézier curves meet in the original
glyph contours, either a rounded corner or beveled corner is generated, depending on which option was
selected on the command line. e values that are used during the import process can be retrieved from
the Slug font by calling the GetFontKeyData() function with the keys kFontKeyOutline.

Note that expanded outlines are very sensitive to errors in the glyph contours appearing in low-quality
fonts. If artifacts are visible when the outline effect is rendered, the original font should be checked for
problems such as tiny loops or cusps.

Font Collections
If the input file is a font collection, then there are two possible situations. First, the collection may
contain multiple fonts that all share a single set of glyph outline curves. In this case, all of the fonts in
the collection are imported, and the output .slug file contains multiple FontHeader structures that each

266 Font Conversion

reference glyphs with curves contained within common texture data. Second, the collection may contain
multiple independent fonts that each have separate tables of glyph outline curves. In this case, only one
font is imported, and which one is determined by the -f option on the command line.

 267

8
Album Creation

Slug includes a command-line tool called slugicon that reads files in the Scalable Vector Graphics
(SVG) and Open Vector Graphics Exchange (OpenVEX) formats and converts them to the Slug album
format. Icons and pictures that are to be stored in a resource and later built with the BuildIcon() or
BuildPicture() functions must first go through this conversion process. Icons can also be created at
run time using the ImportIconData() and ImportMulticolorIconData() functions without the use of
the slugicon tool. Any graphics created at run time with the CreateFill() and CreateStroke()
functions also do not make use of the slugicon tool.

e syntax for the slugicon tool is as follows:

slugicon inputfile -o outputfile options

e inputfile must be an SVG file with the .svg extension or an OpenVEX file with the .ovex
extension. e outputfile would normally have the .slug extension.

Options can be specified with the switches listed in the following table.

Switch Description

-pict Create a picture for each layer in the input file, where each picture
is composed of separate icons generated for each geometry in the
corresponding layer. If this switch is not specified, then a single
icon is created for each layer.

-float For increased precision, use a 32-bit floating-point format for the
curve texture instead of the default 16-bit format. is switch is
ignored if the -pict switch is not also specified.

-no-compress Turn output compression off.

-g ovexfile Generate an OpenVEX file with the name given by ovexfile
containing the geometry that was read from the input file. is is a
valid switch for all input formats, including OpenVEX itself.

268 Font Conversion

-poly-vertex-count count Set the maximum number of vertices generated for an icon’s
bounding polygon to count. If nonzero, the value of count is
clamped to the range 4–6. If this switch is not specified, then the
default value is 4.

-poly-edge-factor factor Set the interior edge cost factor for a icon’s bounding polygon to
factor. If this switch is not specified, then the default value is 1.0.

-max-band-count count Set the maximum number of horizontal and vertical bands to
count. e value of count is clamped to the range 1–32. If this
switch is not specified, then the default value is 32. Lower values
require less storage in the band texture, but higher values produce
better rendering performance.

e slugicon tool can interpret the following subset of the full SVG 1.1 format. Note that strokes and
gradients are supported only in pictures. Icons are always composed of paths filled with a solid color.

• e <line> element. is always produces a stroke but no fill.

• e <rect> element. Ordinary rectangles and rectangles with rounded corners are supported.

• e <circle> and <ellipse> elements.

• e <polygon> and <polyline> elements. e only difference between these is that the stroke for a
<polygon> element is always closed, and the stroke for a <polyline> element is never closed.

• e <path> element. Lines, quadratic curves, and cubic curves are supported. In the SVG path syntax,
the M, L, H, V, Q, T, C, S, and Z commands are supported. Elliptical arcs are not supported. A path
may have multiple subpaths.

• e <g> element. Groups generally have no affect on the final icon geometry. If a <g> element has an
id attribute whose value begins with the string “layer” (not case sensitive), then it is interpreted as a
layer instead of a plain group.

• e <linearGradient>, <radialGradient>, and <stop> elements. Only the first and last stops in a
gradient are supported. Any intermediate stops are ignored.

• e following styling properties: transform, fill, fill-opacity, fill-rule, stroke, stroke-
opacity, stroke-width, stroke-linecap, stroke-linejoin, stroke-miterlimit, stroke-
dasharray, stroke-dashoffset, and opacity.

• Properties specified in presentation attributes such as fill="#00CCFF".

• Properties specified in style attributes such as style="fill:#00CCFF;".

• Butt, square, and round stroke caps. Bevel and round stroke joins. Arbitrary dashing.

Album Creation 269

e x , y, width, and height attributes of the root <svg> element determine the bounds of the drawing
canvas. When icons are converted to the .slug format, they are scaled so that the canvas fits into the
unit square between zero and one while maintaining the aspect ratio.

If icons are being generated (because the -pict switch was not specified), then each layer in the input
file becomes a single icon in the .slug file. All of the geometry elements in each layer are combined into
a single set of curves. If every geometry belonging to a layer has the same fill color, regardless of what
that color actually is, then the corresponding icon is monochrome. Otherwise, the corresponding icon
is multicolor. e number of color layers in the multicolor icon is determined by how many times the
fill color changes as geometries are processed in back-to-front order. For best performance, geometries
having identical fill colors should be arranged consecutively in the stacking order to minimize the
number of color layers.

If pictures are being generated, then each layer in the input file becomes a single picture in the .slug
file. Each geometry element in a layer becomes an individual icon that is scaled so that its bounding box
fits in the unit square between zero and one. When a picture is built for rendering, the icons composing
it are transformed so that they appear at their original positions and sizes, and they are given their
original fill colors.

By default, a bounding polygon is generated for each individual icon and for each icon composing a
picture. As with fonts, the -poly-vertex-count and -poly-edge-factor switches can be used to
control the number of vertices a polygon can have and the cost of interior edges, and they have the same
effect as they do for fonts. If zero is specified for the maximum number of polygon vertices, then
polygons are not generated, and icons are always rendered as quads. See the Bounding Polygons section
in Chapter 7 for details.

 271

A
Release Notes

Slug 7.4
e following notes summarize the changes that were made in Slug version 7.4.

• Support has been added for the 'dtls' OpenType feature. is replaces any letters i and j with dotless
forms so that overmarks look better. is is typically used in mathematical typesetting.

• A new option called -times-lig has been added to the slugfont tool. When enabled, it causes
discretionary ligatures to be reclassified as standard ligatures. is was added because the Times font
considers common ligatures like fi and fl to be discretionary while most other fonts consider them to
be standard.

• Greater support for linear floating-point color values has been added throughout the library.

• Any glyphs in the private-use area of the BMP, having Unicode values in the range U+E000 to
U+F8FF, are now included by default when using the slugfont tool.

• e FontClassData and FontSlantData structures have been added, and they contain information
about a font’s weight class, width class, and slant angle. ey can be retrieved from a font with the
GetFontKeyData() function.

• e FontMathAxisData structure has also been added, and it contains the math axis height for the
font. It can be retrieved from a font with the GetFontKeyData() function.

Slug 7.3
e following notes summarize the changes that were made in Slug version 7.3.

• Color values throughout the API are now specified as four floating-point values in linear RGB space
plus a linear alpha value, all in the range [0.0, 1.0]. When integer values are assigned to the channels
of a color, they are interpreted as gamma-corrected values in the range [0, 255] and automatically
converted to linear floating-point values. Most existing code will continue to work correctly without
any changes. See the Color4U and ColorRGBA classes for more information.

• A vertexType field has been added to the GeometryBuffer structure, and it specifies whether vertices
contain colors with four 8-bit unsigned integer components or four 32-bit floating-point components.

272 Release Notes

• New formatting directives colorf, colorf2, shadow_colorf, shadow_colorf2, outline_colorf, and
outline_colorf2 have been added for setting color values with floating-point components.

• e kLayoutNonlinearColor flag has been removed because it is no longer necessary.

Slug 7.2
e following notes summarize the changes that were made in Slug version 7.2.

• e glyph shadow and outline effects can now be combined and rendered simultaneously by
specifying the kEffectOutlineShadow value for the effectType field of the LayoutData structure.
e previous effectOffset and effectColor fields of the LayoutData structure have been split and
renamed to shadowOffset, shadowColor, outlineOffset, and outlineColor to allow different offsets
and colors to be applied to each effect.

• Format directives that previous began with the effect_ prefix are now split into two version that
begin with the shadow_ and outline_ prefixes.

• e exit position returned by functions such as BuildSlug() now account for the possibility that a
string ends with a run having a layout direction opposite to the primary writing direction (as
determined by the presence or absence of the kLayoutRightToLeft flag in the LayoutData structure).
In this case, the returned position is placed at the end of the run with respect to the primary writing
direction.

• e font importer is now able to reduce band texture size by a small amount by reusing data when
the index list for one band is a subset of the index list for another band for the same glyph. e average
space savings are about 5% for the uncompressed band texture used by the GPU.

• Adaptive supersampling has been deprecated in this release due to its extremely limited usefulness.
Applications should no longer specify the kRenderSupersampling flag when selecting Slug shaders.

Slug 7.1
e following notes summarize the changes that were made in Slug version 7.1.

• e Slug shaders now support the even-odd fill rule in pictures, and the fill-rule property is
recognized in SVG files. Even-odd fills must be enabled by specifying the kRenderEvenOdd render flag
when selecting shaders. e implementation of even-odd fills in the fragment shader now requires
that the frac() function be available in each supported shading language. is function is spelled
fract() in some shading languages, so custom shaders need to map frac() to fract() if even-odd
fills are to be used. is is listed as a new requirement under the GetFragmentShaderSourceCode()
function.

• e BuildTruncatableSlug() function has been updated so that both the primary string and the
suffix string can be precompiled. e old version of this function is still available, but the new version
will generally provide better performance.

Release Notes 273

• e BuildTruncatedMultiLineText() function has been added. is function performs the same
function as the BuildMultiLineText() function, except the last line of text may be truncated to make
space for a suffix string that is always appended. is function is intended to be used when a suffix
string indicates that there are more lines of text that are not displayed.

• e GetNontextureDataSize() function has been added. is function returns the size of a .slug
file excluding the curve and band textures at the end.

• e GetPictureRenderFlags() function has been added. is function calculates the appropriate
render flags for a given set of picture flags so the most efficient shaders are selected.

• A set of validation tests have been added to the library, and they are enabled by building with the
SLUG_VALIDATION macro defined. e SetValidationCallback() function establishes a callback
function in the application that is invoked whenever a validation test fails. Strings passed to the
callback function identify the API function that was called and provide a message about what
validation test failed.

• e font importer will now adjust the position of a glyph’s curves if the le side bearing specified for
the glyph in the original font is not consistent with the le edge of the glyph’s bounding box.

Slug 7.0
e following notes summarize the changes that were made in Slug version 7.0.

• e font and album file formats have been updated in this version to support new features and to
allow some existing features to be implemented more cleanly. All .slug files, whether the resources
they contain are fonts or icon/picture albums, now begin with a common header described by the
SlugFileHeader structure. Information about the curve and band textures is stored in this header, so
it’s now possible to extract the texture data without knowing which type of resource a file contains.

• e format of the band texture has been changed so it now uses two 16-bit unsigned integer channels
instead of four. e second pair of values was needed only for the symmetric bands optimization,
which has been removed from the library. Band textures now occupy half the amount of memory that
they needed in previous versions of Slug.

• e library now supports compiled text objects of different sizes. e CompiledText structure is now
a header for a CompiledStorage structure that contains the maximum storage space for a compiled
string of text. e CompileString() function stores a compiled string in a CompiledStorage object
and returns a pointer to the CompiledText header. e MakeCompactCompiledText() function takes
an existing compiled text object and copies its contents into a compact buffer allocated by the
application for long-term storage. Library functions that accept a pointer to a compiled text string
can accept pointers to either the full-size CompiledStorage object or a compact storage object.

• e multi-line layout functions in the library now support so hyphens specified in a text string with
Unicode value U+00AD. So hyphens can be inserted into words to indicate optional line-breaking
locations, and they are enabled by specifying the kLayoutSoftHyphen flag in the layoutFlags field of

274 Release Notes

the LayoutData structure. A so hyphen is rendered only if it is the final character on a line of text,
and it is not displayed nor does it contribute to line length otherwise.

• e library now supports a form of vertical glyph layout, primarily for Japanese writing. When the
kLayoutVerticalRotation flag is set in the layoutFlags field of the LayoutData structure, glyphs
corresponding to characters designated by the Unicode standard as upright in vertical text are rotated
90 degrees counterclockwise. ese glyphs are shied to account for their vertical origins (derived
from bounding box height and top side bearing), and their spacing is determined by advance height
instead of advance width. Vertical alternates are also substituted as appropriate for those glyphs that
have them. In vertical layout mode, text is still laid out horizontally, and the application is responsible
for transforming the final set of vertices as a whole with a 90-degree clockwise rotation.

• For language systems that require it, glyphs can now be automatically decomposed into multiple
components that are later combined with other glyphs independently. is applies specifically to the
Sara Am glyph in the ai writing system and is necessary for correct mark layout.

• e sequence replacement functionality previously used for basic glyph composition and ligature
substitution has been greatly expanded. e library now recognizes backtrack and lookahead contexts
that can be specified for conditional sequence matching, and the actions that can be taken once a
match is found have been generalized. In this version of Slug, functionality exists for performing one-
to-one glyph substitution and ligature substitution in the context of specific sets of surrounding
glyphs. is provides support for many new glyph replacement rules that some fonts contain to
support specific writing systems.

• e PlaceholderData structure contains a new glyphNumber field that holds the number of glyphs
preceding the location of the placeholder character in the original string.

• e LocationData structure contains a new dualCaretOffset field that holds a horizontal delta
between the primary caret position and a secondary caret position in bidirectional text. ere can be
two separate caret positions when the insertion point falls on the boundary between runs of text
having opposite writing directions. e two caret positions correspond to where new characters
would be inserted depending on whether those characters belonged to le-to-right or right-to-le
writing systems.

• e font conversion tool can now optionally include extra information in a .slug file that allows
glyph contours to be extracted by an application at run time. is is enabled by specifying -contours
on the command line for the slugfont tool. At run time, the Bézier curves making up the contours
of a glyph can be retrieved by calling the new GetGlyphContourCurveCount() and GetGlyphContour-
Data() functions.

• A new kStrokeContours flag can be specified in the strokeFlags parameter of the CountStroke()
and CreateStroke() functions. is flag allows the set of Bézier curves to be composed of multiple
closed contours, which is exactly what is returned by the GetGlyphContourData() function.

Release Notes 275

Slug 6.5
e following notes summarize the changes that were made in Slug version 6.5.

• e existing TextWorkspace structure has been renamed to CompiledText, and its fields have been
documented as part of the official API. Most of the information in this structure is organized into
arrays of CompiledCharacter and CompiledGlyph structures.

• e GetCharacterData() function and CharacterData structure have been removed from the library
because they are unnecessary once the data in the CompiledText structure is exposed.

• e existing GetUnicodeCharacterFlags() function has been documented as part of the official API.
is function returns flags corresponding to various Unicode properties for a character code. A new
flag indicating whether a character is a combining mark has also been added.

• e LocateSlug() function has been added to the library. is function determines caret positioning
information for specific byte locations within a text string.

• A new command line switch called no-compress has been added to the slugfont and slugicon tools
to disable compression of the curve and band textures.

• A mechanism for injecting a root signature into DX12 shaders has been added for the Xbox platform.
e identifier SLUG_SIG can be defined as the quoted string containing the root signature.

Slug 6.4
e following notes summarize the changes that were made in Slug version 6.4.

• To eliminate some redundant text processing work that occurs with typical usage of the library, a new
set of API functions has been added that operate on a precompiled structure containing character,
glyph, and layout information instead of the original text string. e CompileString() and Compile-
StringEx() functions generate this information and store it in a TextWorkspace structure. at
workspace can then be repeatedly passed to multiple API functions such as CountSlug() and
BuildSlug() without having to process the original string again.

• It is now possible to insert placeholders for externally rendered graphics into text strings. e
placeholderBase and placeholderCount fields of the LayoutData structure define a range of
Unicode values that are interpreted a placeholders, and the placeholderWidthArray field points to
an array of widths that tell Slug how much space to reserve for each type of placeholder. Functions
such as BuildSlug() and LayoutSlug() can then return information about the positions where
placeholders occur when text is laid out.

• When bidirectional text layout is enabled, Unicode characters with the mirrored property are now
replaced with their mirrored counterparts when they occur inside a right-to-le run of text.

• e kLayoutNonlinearColor flag can now be specified in the layoutFlags field of the LayoutData
structure. is flag prevents color values from being linearized in the vertex data so they are passed
through in nonlinear gamma space.

276 Release Notes

• e BuildTruncatableSlug() function has been extended to support several new optional features.

• e symmetric bands optimization has been deprecated and should not be used. e kRender-
SymmetricBands flag should not be passed to the GetShaderIndices() function, and it should not be
set in the renderFlags field of the LayoutData structure. e removal of this optimization will allow
the size of the data stored in the band texture to be cut in half in future versions of Slug, and this
produces a small speed improvement for most fonts due to better texture caching on the GPU.

Slug 6.3
e following notes summarize the changes that were made in Slug version 6.3.

• e kLayoutWrapDisable flag can now be specified in the layoutFlags field of the LayoutData
structure. is flag prevents lines from being broken by the BreakSlug() and BreakMultiLineText()
functions when the maximum span is exceeded, meaning that lines are broken only at hard break
characters.

• e kLayoutLayerTextColor flag can now be specified in the layoutFlags field of the LayoutData
structure. is flag causes the colors of all layers in a multicolor glyph to be multiplied by the current
text color, which can include a gradient. is flag can be controlled by the laymul format directive.

• e geometryBuffer parameter passed to the BuildSlug(), BuildMultiLineText(), Assemble-
Slug(), and BuildTruncatableSlug() functions can now be nullptr. In this case, no vertex and
triangle geometry is generated, but all other information returned by these functions is still valid.

• Triangles written by any of the geometry building functions can now contain 32-bit vertex indices. A
new field called indexType has been added to the GeometryBuffer structure to indicate whether
16-bit or 32-bit indices should be generated. (is field is initialized for 16-bit indices by default, so
existing code does not need to be updated.)

• Miter, bevel, and round joins inside stroked paths now generate fewer vertices and triangles in cases
where the two curves joined together are straight lines.

Slug 6.2
e following notes summarize the changes that were made in Slug version 6.2.

• e kLayoutFullJustification flag can now be specified in the layoutFlags field of the
LayoutData structure to enable full justification in multi-line text. is is independent of the value
specified by the textAlignment field, which still applies to the last line in each paragraph.

• e graphicsFlags field of the GraphicData structure now contains the kIconMulticolor flag to
indicate when an icon can be rendered in multicolor mode.

• e tabRound field has been added to the LayoutData structure. is is an em-space distance added
to the current drawing position when determining where the next tab stop should be. is is set to
0.0 by default to maintain backward compatibility.

Release Notes 277

• e defaultLayoutData field has been added to the LayoutData structure. If this is not nullptr, then
it provides the values used by the reset() format directive. If this is nullptr, then the values used by
the reset() format directive are the values initially passed to an API function through the
LayoutData structure.

Slug 6.1
e following notes summarize the changes that were made in Slug version 6.1.

• Slug can now render filled paths with linear and radial gradients. e FillData structure passed to
the CreateFill() function can specify gradient information. Gradients in SVG files are recognized
and imported by the slugicon tool. A Gradient structure has been added to the OpenVEX format.

• Either of the curveTexture and bandTexture parameters passed to the ExtractFontTextures() and
ExtractAlbumTextures() functions can now be nullptr. is makes it possible to extract only one
of the curve or band textures at a time.

• e missingGlyphIndex field has been added to the LayoutData structure. is field specifies the
index of the glyph to draw whenever a character is missing in a font.

Slug 6.0
e following notes summarize the changes that were made in Slug version 6.0.

• Slug now supports arbitrary stroked paths with optional dashing and standard cap and join styles.
Stroked paths can appear in a picture that was imported to an album resource, or they can be created
at run time with the CreateStroke() function. A new render flag, kRenderStrokes, has been defined
and must be used to select the proper shader whenever stroked paths are rendered.

• Two new functions called CreateFill() and CreateStroke() provide the ability to generate the data
for filled and stroked paths at run time. ese functions generate data that is stored in the curve and
band textures as well as vertex and triangle data. ey can be used to incrementally build arbitrarily
complex vector graphics at run time that can then be rendered in a single draw call.

• e extended functions that work with multiple fonts now accept an array of FontDesc structures
instead of an array of pointers to FontHeader structures. Each FontDesc structure contains a pointer
to a FontHeader structure and also allows a per-font scale and offset to be specified. is is useful for
adjusting the sizes of different fonts so that they appear to have the same visual size, which is
sometimes necessary because different fonts can have different capital heights within the em square.
Adapter functions are included so that the previous API can still be used.

• Several data structures have been renamed. For most cases, this was done to reflect the fact that they
are no longer used exclusively for glyphs, but now also for general geometry. e old names are still
available as aliases. e GlyphVertex and GlyphTriangle structures have been renamed to Vertex
and Triangle. e GlyphBuffer structure has been renamed to GeometryBuffer. e TextureState

278 Release Notes

structure has been renamed to TextureBuffer. e Workspace structure has been renamed to
TextWorkspace, and the ImportWorkspace structure has been renamed to FillWorkspace.

• e run-time library can now share contour data among glyphs that are identical except for an (x, y)
offset in em space. is allows the font importer to recognize cases in which one glyph is identical to
another glyph with an offset and reduce the size of the data. is typically happens in TrueType fonts
that include both tabular and proportional figures, numerators and denominators, subscripts and
superscripts, etc. Some fonts will decrease in size significantly when re-imported.

• e font importer can now synthesize tabular figures if they are not included in the original font. Each
tabular figure has an advance width equal to the largest of the proportional figures, and the bounding
box of each glyph is centered within that width.

• Alternative fraction sequences have been added to the types of sequences that are supported by Slug.
is corresponds to the 'afrc' feature in OpenType.

• e BreakSlug() and BreakMultiLineText() functions can now combine two different consecutive
hard break characters into a single line break. is is useful for text containing a mixture of CR, LF,
and CRLF characters, each of which should cause only one break.

• If a font contains caret positioning data for ligatures in its GDEF table, it is now recognized during the
font import process. If that information is not available, then it is automatically generated based on
the proportional bounding box widths of the characters that are replaced by each ligature. e
TestSlug() and TestSlugEx() functions use the caret positioning data to place the caret between
characters inside a single ligature glyph.

• All text layout functions now support basic tab spacing. When the kLayoutTabSpacing flag is
specified in the layoutFlags field of the LayoutData structure, tab characters in the text advance the
drawing position to the next multiple of the spacing specified in the tabSize field.

• e renderFlags parameter was removed from the BuildPicture() function.

Slug 5.5
e following notes summarize the changes that were made in Slug version 5.5.

• Support for font collections has been added to the library and import tools. A new GetFontCount()
function has been added to the library, and the GetFontHeader() function has been updated to accept
an optional font index.

• An exitPosition parameter has been added to the BuildSlug() and BuildSlugEx() functions. is
parameter is optional, and it has the same meaning as the existing exitPosition parameter for the
LayoutSlug() function.

• e CalculateTextLength() and CalculateTextLengthEx() functions have been modified to accept
a maximum string length. In addition to the maximum span, these functions can now calculate text
lengths for a second truncation span. is is convenient for determining where to cut off a string that
won’t fit in a given span so that a suffix such as an ellipses can be added.

Release Notes 279

• New high-level functions called BuildTruncatableSlug() and BuildTruncatableSlugEx() have
been added to the library. ese functions automatically determine whether a text string needs to be
truncated in order to fit inside a maximum span, and if so, append an arbitrary suffix string without
overflowing.

• New TestSlug() and TestSlugEx() functions were added to the API. ese functions determine
how a test position interacts with a single line of text.

• e ImportMulticolorIconData() function has been changed so that it accepts an array of curve
counts and an array of pointers to separate arrays containing the curves used by each color layer.

• e slugfont tool now remaps the (very old) symbol encoding to the equivalent Unicode characters
and aliases the characters in the range U+0020 to U+007E.

• e slugfont tool can now import glyphs having Unicode values in planes 0x03 to 0x10, which
includes the private use area in planes 0x0F and 0x10.

• e OpenVGX (Open Vector Graphics Exchange) format has been renamed OpenVEX to avoid
confusion with an independent and unrelated API.

Slug 5.1
e following notes summarize the changes that were made in Slug version 5.1.

• When drop shadow and outline effects are enabled, the geometry they generate is no longer inter-
leaved. All effect geometry precedes all ordinary geometry in the vertex buffer. is is necessary for
correct cursive joining with an effect enabled. is change is completely internal, and there are no
associated API changes.

• A new command-line switch called -max-band-count is available in the slugfont and slugicon tools.
It provides control over the maximum number of horizontal and vertical bands that can be generated
for each glyph or icon. A lower number of bands requires less storage space in the band texture, but
a higher number of bands produces better performance.

• e maximum number of bands can also be controlled for icons imported at run-time through the
new maxBandCount parameter added to the ImportIconData() and ImportMulticolorIconData()
functions.

• e slugfont tool now calculates font-wide bounding boxes representing the maximum extents of
all glyphs imported for a font. One bounding box is calculated for all ordinary base glyphs, and a
separate bounding box is calculated for all glyphs that are combining marks. is information is
stored in a FontBoundingBoxData structure, and it can be retrieved by an application by calling the
GetFontKeyData() function with the key kFontKeyBoundingBox.

Slug 5.0
e following notes summarize the changes that were made in Slug version 5.0.

280 Release Notes

• Some of the source code files have been reorganized and renamed. Files belonging exclusively to Slug
are now prefixed with SL, and they are stored in the SlugCode directory. Files containing more generic
code shared by multiple technologies continue to be prefixed with TS, and they are stored in the
TerathonCode directory.

• e term “pixel shader” has been replaced with the term “fragment shader” throughout Slug. is
makes it consistent with the terminology used by the majority of the supported rendering libraries,
and it distinguishes the use of “fragment” from the use of “pixel” in other contexts.

• Glyphs containing multiple color layers are no longer rendered with a special version of the Slug
fragment shader that loops over the color layers at every pixel. Instead, multicolor glyphs are rendered
as multiple glyphs stacked on top of each other with separate vertex and triangle geometry for each
layer. is has two big advantages: First, it means that multicolor glyphs can be rendered alongside
ordinary monochrome glyphs without any penalty for glyphs not having color layers. Second, because
many layers tend to cover areas much smaller than the whole glyph, rendering performance for color
emoji is significantly better. Depending on the font and particular emoji, rendering times can be
reduced by 15–20% in some cases and more than 50% in others.

• Any fonts containing multicolor glyphs (emoji) need to be reimported through the slugfont tool
before they can be rendered in this version.

• e GetShaderIndices() function has been changed so that it no longer takes a pointer to a font
header. e index of the fragment shader no longer depends on single-pass multicolor information
being present in the font. When retrieving shader indices for the purposes of rendering text, the value
of the renderFlags parameter passed to the GetShaderIndices() function may no longer contain
the kRenderMulticolor bit.

• A new indirect font mapping mechanism has been added to Slug that provides a flexible way to utilize
multiple font types in the same text string with optional fallbacks for missing glyphs. Font types are
identified by application-defined 32-bit codes, and each type can reference multiple source fonts in a
master list of fonts specified for the string. All of the library functions that operate on a single “slug”
or on multi-line text now have extended versions that perform the same operation with a given font
mapping structure.

• e font() format directive has been added to allow the font type to be changed anywhere inside a
text string. e corresponding font type is stored in the new fontType field of the LayoutData
structure.

• When drop shadow and outline effects are enabled, the geometry they generate is now interleaved
with the primary glyph geometry. e counting functions that would have previously returned two
vertex counts and two triangle counts when effects are enabled now return only one of each, and the
building functions that would have previously written data to two GeometryBuffer structures now
write to only one.

• A nonzero script level specified in the LayoutData structure no longer affects the textScale and
textOffset fields, which can now be used independently of transform-based subscripts and
superscripts.

Release Notes 281

• Some optimizations have been made to make text layout functions faster on the CPU.

• e slugfont tool has been modified to handle some unusual not-necessarily-standard-compliant
kerning tables found to be used by some fonts in the wild.

Slug 4.2
e following notes summarize the changes that were made in Slug version 4.2.

• e method by which bounding polygons for glyphs and icons are calculated has been changed in
this version. Previously, regions of empty space at the corners of the aligned bounding box were
trimmed, where possible, to produce a polygon having between 4 and 8 sides. is had the tendency
to create sliver triangles, and it did not allow single triangles to be used where the underlying shape
was naturally triangular. Now, a more optimal bounding polygon is calculated independently of the
bounding box, and it can have between 3 and 6 sides. In the process of choosing the best polygon, the
rendering cost of the shortest possible set of interior edges for the polygon’s triangulation is taken in
account. In general, glyphs and icons using the new bounding polygons render roughly 5–10% faster,
and they use an average of 20–25% fewer vertices. See Section 4.14 for more information. Note that
fonts and albums generated by previous versions of the slugfont and slugicon tools will continue to
be rendered in the same way as they previously were, with trimmed corners. To take advantage of the
new bounding polygons, fonts and albums need to be generated with the tools included with Slug 4.2.

• e slugfont and slugicon tools have new command-line parameters that control the generation of
bounding polygons by specifying the maximum number of vertices and an interior edge cost factor.
e FontPolygonData structure is now included with an imported font so that the specific settings
used during import can be retrieved with the GetFontKeyData() function.

• e ImportIconData() and ImportMulticolorIconData() functions take new optional parameters
that control bounding polygon generation in the same way that command-line parameters for the
slugicon tool do. Since these parameters precede the optional workspace parameter for these
functions, any existing code that uses the workspace parameter will need to be updated.

• e slugfont import tool has been updated so it can read CID-keyed type 2 fonts stored in a file with
the .otf extension.

Slug 4.1
e following notes summarize the changes that were made in Slug version 4.1.

• Some internal changes were made to accommodate the arbitrary per-glyph transforms available in
this release and the arbitrary glyph boundary polygons that will be implemented in a future release.
It was necessary to modify the vertex format used by the Slug shaders, and the total size of a single
vertex has increased by eight bytes. As shown by the Vertex data structure, each vertex now has four
different four-component floating-point attributes and a single four-component 8-bit unsigned
integer attribute. Application code that specifies the format of these attributes to a rendering API must
be updated to reflect the new format.

282 Release Notes

• e LayoutSlug() and LayoutMultiLineText() functions have been expanded so that, in addition
to glyph indices and drawing positions, they can return per-glyph transformation matrices and per-
glyph colors. A new function called AssembleSlug() has been added to the library, and it generates
vertex and triangle data using application-supplied glyph positions, transforms, and colors. is
allows an application to have full control over custom glyph layouts, but still use Slug to apply
typographic features and special effects.

Slug 4.0
e following notes summarize the changes that were made in Slug version 4.0.

• e slugfont import tool now supports the PostScript flavor of OpenType fonts. ese are the fonts
that contain embedded Adobe type 2 fonts in a 'CFF ' table and have the .otf file extension.

• Icons can now be stored in “album” files, and pictures can be defined by sets of icons. Several new
functions and data structures have been added to the library to support album files and pictures.

• Slug now includes an icon import tool called slugicon that can read SVG and OpenVEX files and
produce album files containing icons or pictures. Support for SVG is limited to a specific subset of
functionality, as described in Chapter 8.

• A new rendering option has been added to the Slug fragment shaders that enables a fast path for icons
having outlines composed entirely of straight lines. is optimization is typically used to render
pictures for which many components have polygonal geometry. is option is selected by including
the kRenderLinearCurves flag in the renderFlags parameter passed to the GetShaderIndices()
function.

• New paragraph-level attributes are now available when laying out multi-line text. Additional spacing
may be inserted between paragraphs, le and right margins can be defined, and the first line of each
paragraph can be indented. ese attributes are enabled by including the kLayoutParagraph-
Attributes flag in the layoutFlags field of the LayoutData structure, and their values are specified
in the paragraphSpacing, leftMargin, rightMargin, and firstLineIndent fields.

• e BreakMultiLineText() function has been changed to properly support paragraph attributes over
multiple calls. It now takes a LineData parameter instead of a string offset to establish the properties
of the preceding line of text, if any.

• e ImportMulticolorIconData() function has been changed so that it accepts a single array of
Bézier curves, and the curves belonging to each color layer are identified by a starting index within
that array and a count of the curves in the layer.

• e LayoutSlug() and LayoutMultiLineText() functions have been changed so they can return
scale information in addition to glyph positions.

• When generating expanded glyph outlines with the slugfont tool, the default outline join style is
now bevel instead of round to be consistent with the default line join style used by vector graphics
standards.

Release Notes 283

Slug 3.5
e following notes summarize the changes that were made in Slug version 3.5.

• A major new feature called dynamic glyph dilation has been added to the library. e vertex shader
now performs a calculation that dilates a glyph’s bounding polygon by the optimal amount. is
ensures that the smallest possible area is filled by the fragment shader, improving performance in
cases where text is dynamically rendered at different scales. It also ensures that bounding polygons
are as large as necessary for antialiasing, improving quality in cases where text is rendered at very
small sizes. When text is viewed in perspective, the amount of dilation can be different for each vertex
of a glyph.

• e Vertex structure has been modified to support dynamic glyph dilation. e position and
texcoord fields now have four components each instead of the previous two. is affects the offsets
that need to be specified for vertex attribute arrays.

• e dilationFactor field of the LayoutData structure has been removed because it is no longer
necessary.

• e slugfont tool has been modified so that kerning information can be imported from both the
GPOS and kern tables for the same font. It was discovered that some fonts were storing data in the kern
table that was not properly duplicated in the GPOS table. In this version, if the GPOS table does not
contain kerning data for a particular glyph, then any kerning data found in the kern table for the same
glyph will be imported.

• e slugfont tool has been modified to recognize a default glyph classification, undocumented in
the OpenType specification, used by some fonts for class-based kerning. If an imported font is kerning
in some cases, but not in others where kerning is expected, this update should resolve the problem.

Slug 3.0
e following notes summarize the changes that were made in Slug version 3.0.

• e library is now able to render arbitrary vector-based icons that are specified independently of any
font. An icon is created by supplying a set of closed quadratic Bézier curves to the ImportIconData()
or ImportMulticolorIconData() function. e BuildIcon() function then generates vertex and
triangle data that can be rendered with the same shaders used to render glyphs.

• e GetShaderIndices() function has been changed so that the second parameter is a uint32
containing the render flags instead of a pointer to a LayoutData structure. is was done because the
function applies to icon rendering as well as font rendering, and icons do not use LayoutData
structures. Existing code can be updated by replacing the pointer to a LayoutData structure with the
value of the renderFlags member of that same structure.

• e CountSlug() and CountMultiLineText() functions have been updated to return the number of
glyphs that would be generated by a text string. Compatibility is not broken because only the return
values of these functions have been changed from void to int32.

284 Release Notes

• New LayoutSlug() and LayoutMultiLineText() functions have been added to the library. ey
generate glyph index and position arrays for a text string instead of vertex and triangle buffers.

• A .slug file may now contain a table that maps glyph indices used by Slug to the glyph indices used
in the original font file. is table is generated when the -glyph-mapping option is specified during
font conversion.

• A new grid positioning mode has been added for text layout. When enabled, advance widths and
kerning are ignored, and glyphs are centered on regularly-spaced positions determined only by the
tracking value.

• Stronger compression is now applied to the curve and band textures. A new optional parameter has
been added to the ExtractFontTextures() function to provide the per-thread temporary storage
that is now needed for decompression.

• New types of key data containing ascent, descent, and line gap values have been added to every font
imported with this version of Slug. ere are two variants, as described in the documentation for the
GetFontKeyData() function.

Slug 2.0
e following notes summarize the changes that were made in Slug version 2.0.

• e .slug file format has been updated, and files created with earlier versions need to be created with
the slugfont utility again to use the new format.

• In OpenGL, the glyph shaders now assume that the curve and band textures have been bound to the
GL_TEXTURE_2D target instead of the GL_TEXTURE_RECTANGLE target.

• Performance has been improved significantly by increasing the maximum number of bands into
which each glyph can be divided and making the band scale independent for the horizontal and
vertical directions. Rendering time is reduced by approximately 25% for simple fonts and by 50% or
more for complex fonts.

• e internal processing of character strings has been changed and now uses temporary storage called
a workspace. An application can allocate Workspace structures and pass them to the library functions
that need them so that Slug functions can be called concurrently from multiple threads. If reentrancy
is not required, then the library uses a shared internal workspace.

• Support has been added for languages with right-to-le writing directions, and the library can
perform bidirectional text layout. ese features are enabled by setting the kLayoutRightToLeft and
kLayoutBidirectional flags in the layoutFlags field of the LayoutData structure.

• Initial, medial, and final forms are now substituted in cursive languages like Arabic based on the
Unicode joining properties of the surrounding characters.

• Object-space scale and offset values have been added to the LayoutData structure to provide a way to
transform the final vertex positions of each glyph.

Release Notes 285

• New renderFlags and geometryType fields have been added to the LayoutData structure, and they
provide separate fields for new options and some existing options that were previously specified in
the layoutFlags field.

• e LayoutData structure contains a new dilationFactor field that provides control over how much
glyph bounding boxes are dilated.

• e library now supports alternate substitution for fractions. When enabled, a slash character
preceded and followed by one or more numerical digits is transformed into a sequence of numerator
alternates, a fraction slash, and a sequence of denominator alternates.

• e glyph shaders have been reorganized in such a way that it’s possible for an application to
incorporate them into larger shaders. is allows text to be rendered with surface materials in a 3D
game scene, for example.

• Glyph shaders are now returned as an array of strings by the GetVertexShaderSourceCode() and
GetFragmentShaderSourceCode() functions based on what rendering features are enabled and which
components are needed by the application.

• e glyph shader can now perform adaptive supersampling for high-quality minified rendering. is
feature is enabled by setting the kRenderSupersampling flag in the renderFlags field of the
LayoutData structure.

	Contents
	Slug Library Overview
	Typography
	2.1. Glyphs
	2.2. Metrics
	2.3. Kerning
	2.4. Combining Marks
	2.5. Sequence Replacement
	2.6. Alternate Substitution
	2.7. Transform-Based Scripts
	2.8. Underline and Strikethrough
	2.9. Bidirectional Text Layout
	2.10. Paragraph Attributes
	2.11. Text Alignment
	2.12. Tab Spacing
	2.13. Grid Positioning

	Vector Graphics
	3.1. Fills
	3.2. Strokes

	Rendering
	4.1. Font and Album Resources
	4.2. Building a Slug
	4.3. Multi-Line Text
	4.4. Custom Glyph Layout
	4.5. Placeholders
	4.6. Multiple Fonts
	4.7. Text Colors
	4.8. Color Glyph Layers
	4.9. Optical Weight
	4.10. Clipping
	4.11. Effects
	4.12. Icons and Pictures
	4.13. Bounding Polygons
	4.14. Optimization

	Programming Reference
	AlbumHeader structure
	AssembleSlug() function
	AssembleSlugEx() function
	BreakMultiLineText() function
	BreakMultiLineTextEx() function
	BreakSlug() function
	BreakSlugEx() function
	BuildMultiLineText() function
	BuildMultiLineTextEx() function
	BuildIcon() function
	BuildPicture() function
	BuildSlug() function
	BuildSlugEx() function
	BuildTruncatableSlug() function
	BuildTruncatableSlugEx() function
	BuildTruncatedMultiLineText() function
	BuildTruncatedMultiLineTextEx() function
	CalculateGlyphCount() function
	CalculateGlyphCountEx() function
	Color4U class
	ColorData structure
	ColorRGBA class
	CompiledCharacter structure
	CompiledGlyph structure
	CompiledText and CompiledStorage structures
	CompileString() function
	CompileStringEx() function
	CountFill() function
	CountIcon() function
	CountMultiLineText() function
	CountMultiLineTextEx() function
	CountPicture() function
	CountSlug() function
	CountSlugEx() function
	CountStroke() function
	CreateData structure
	CreateFill() function
	CreateStroke() function
	ExtendedGlyphData structure
	ExtractBandTexture() function
	ExtractCurveTexture() function
	ExtractFontTextures() function
	FillData structure
	FillWorkspace structure
	FontBoundingBoxData structure
	FontClassData structure
	FontDecorationData structure
	FontDesc structure
	FontHeader structure
	FontHeightData structure
	FontMap structure
	FontMathAxisData structure
	FontMetricsData structure
	FontOutlineData structure
	FontPolygonData structure
	FontScriptData structure
	FontSlantData structure
	GeometryBuffer structure
	GetAlbumHeader() function
	GetBandTextureStorageSize() function
	GetCompactCompiledStorageSize() function
	GetCurveTextureStorageSize() function
	GetFontHeader() function
	GetFontKeyData() function
	GetFragmentShaderSourceCode() function
	GetGlyphContourCurveCount() function
	GetGlyphContourData() function
	GetGlyphData() function
	GetGlyphIndex() function
	GetIconData() function
	GetKernValue() function
	GetNontextureDataSize() function
	GetPictureRenderFlags() function
	GetShaderIndices() function
	GetUnicodeCharacterFlags() function
	GetVertexShaderSourceCode() function
	GlyphData structure
	GlyphRange structure
	GraphicData structure
	IconData structure
	ImportIconData() function
	ImportMulticolorIconData() function
	LayoutData structure
	LayoutMultiLineText() function
	LayoutMultiLineTextEx() function
	LayoutSlug() function
	LayoutSlugEx() function
	LineData structure
	LocateSlug() function
	LocateSlugEx() function
	LocationData structure
	MakeCompactCompiledText() function
	MeasureSlug() function
	MeasureSlugEx() function
	PictureData structure
	PlaceholderBuffer structure
	PlaceholderData structure
	ResolveGlyph() function
	RunData structure
	SetDefaultFillData() function
	SetDefaultLayoutData() function
	SetDefaultStrokeData() function
	SetValidationCallback() function
	SlugFileHeader structure
	StrokeData structure
	StrokeWorkspace structure
	TestData structure
	TestSlug() function
	TestSlugEx() function
	TextureBuffer structure
	Triangle structure
	UpdateLayoutData() function
	Vertex structure

	Format Directives
	Font Conversion
	Album Creation
	Release Notes
	Slug 7.4
	Slug 7.3
	Slug 7.2
	Slug 7.1
	Slug 7.0
	Slug 6.5
	Slug 6.4
	Slug 6.3
	Slug 6.2
	Slug 6.1
	Slug 6.0
	Slug 5.5
	Slug 5.1
	Slug 5.0
	Slug 4.2
	Slug 4.1
	Slug 4.0
	Slug 3.5
	Slug 3.0
	Slug 2.0

