

Method for rendering resolution-independent shapes directly from outline control points

US Patent # 10,373,352

Inventor: Eric Lengyel

1

TITLE OF INVENTION

Method for rendering resolution-independent shapes directly from outline control points

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority from provisional application No. 62476873, filed March

27, 2017, the disclosure of which is incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0002] The present invention relates to the field of 3D computer graphics and more specifically

to the rendering of shapes defined by quadratic Bézier curves.

2. Description of Related Art

[0003] With the use of modern digital fonts, text is composed of a series of individual glyphs

that determine the shape of each letter, number, or symbol. The outline of each glyph is defined

by a set of Bézier curves, having either quadratic or cubic degree, connected to each other in

such a way that they form one or more closed contours. Real-time rendering applications often

have a need to display text inside a 3D scene, and any particular string of text can be applied to a

geometric surface, or it can be shown as a free-floating label. Because the camera position from

which scenes are rendered is almost always moving through space or rotating in some way, the

glyphs that compose text in the scene are drawn with continuously changing transforms. Thus,

the size of the glyphs in the viewport are almost never the same from one frame to the next.

Furthermore, the glyphs are often drawn with perspective distortion because the camera isn’t

necessarily pointed straight at the surface to which text is applied. These conditions create a

demand for the ability to dynamically render glyphs with high quality under arbitrary affine and

projective transforms.

[0004] The simplest method for rendering text in a 3D environment involves rasterizing the

glyphs belonging to a font at one or more specific sizes and storing the results in a pixel image

known as a texture atlas. Text is rendered in a 3D scene by drawing one quad, usually comprising

two triangles, per glyph and assigning texture coordinates that map a prerendered glyph in the

2

texture atlas to the area covered by the quad. This method has been popular due to its ease of

implementation and its excellent performance, but the output quality is extremely limited

primarily due to blurring caused by bilinear interpolation when the displayed sizes of the glyphs

exceed the resolution at which they are stored in the texture atlas.

[0005] A more advanced method calculates a signed distance field (SDF) for each glyph, as

described in “Improved Alpha-Tested Magnification for Vector Textures and Special Effects”, C.

Green, SIGGRAPH 2007 Courses, pp. 9–18. This technique is able to produce crisp glyph

outlines at widely varying scales by storing per-pixel distances to the glyph boundaries in the

texture atlas instead of storing the final appearance of each glyph at a specific size. However, this

method rounds off sharp corners and thus does not preserve the true outlines of the glyphs, a

problem addressed in an enhancement of the method that calculates multiple channels of distance

data for each glyph. Single-channel SDFs and, to a much larger degree, multiple-channel SDFs

require a complicated analysis step in the preparation of the texture atlas, and due to their

resolution dependence, are often unable to properly capture fine details in complex glyphs.

[0006] Resolution-independent methods aim to draw glyphs at any scale without the artifacts

associated with image data or signed distance field data stored in a prerendered texture atlas.

These methods work by rendering glyphs directly from the mathematical curves that define their

shapes, avoiding an intrinsic resolution dependence because the exact positions of each outline’s

control points are utilized throughout the rendering process without any prior per-pixel sampling.

[0007] One method, described in “Resolution Independent Curve Rendering Using

Programmable Graphics Hardware”, C. Loop and J. Blinn, Proceedings of ACM SIGGRAPH

2005, pp. 1000–1009, renders a glyph by constructing a triangle mesh that incorporates its

outline control points as vertex positions. Each triangle corresponds to at most one Bézier curve,

and a short calculation in a pixel shader determines whether each pixel covered by the triangle is

inside or outside the boundary with respect to that one curve. This method effectively renders

precise glyph shapes at all scales, but it requires a complicated triangulation step in which the

number of vertices is proportional to the number of control points defining each glyph, a

significant divergence from the constant four vertices required per glyph for the previously

described methods. The variable and font-dependent numbers of vertices per glyph make it more

difficult to perform text layout in general, especially if the text needs to be clipped or applied to a

3

curved surface. Furthermore, this method tends to require small, thin triangles that prevent

optimal performance on the graphics processing unit (GPU).

[0008] A different method renders a glyph by using only two triangles to cover a glyph’s

bounding box, and a program, typically a pixel shader executed on the GPU, accesses a subset of

all the Bézier curves defining the glyph’s outline to determine whether each pixel location is

inside or outside the entire boundary of the shape. This method requires a way of dynamically

calculating either a signed distance value or a winding number at each pixel location, but in the

process of computing this information, it is difficult to avoid numerical precision problems

involving floating-point round-off errors that produce a variety of rendering artifacts. These

artifacts often appear upon modest magnification and manifest themselves as isolated pixels and

linear clusters of pixels that are incorrectly drawn due to round-off errors causing the

misclassification of pixel locations with respect to a glyph’s outline.

BRIEF SUMMARY OF THE INVENTION

[0009] The present invention renders filled shapes having outlines defined by one or more

closed contours composed of quadratic Bézier curves by calculating the winding number for

each pixel inside a rectangular boundary enclosing the entire shape. The winding number is

calculated by considering rays that begin at the pixel location and extend to infinity in directions

parallel to the x and y axes. Each intersection of such a ray with a clockwise-wound contour

increments the winding number, and each intersection of such a ray with a counterclockwise-

wound contour decrements the winding number.

[0010] In the various embodiments of the present invention, numerical robustness is

guaranteed by classifying the control points of each Bézier curve with respect to each ray in

order to reduce the problem space to a set of eight possible states. The number and types of ray

intersection are predetermined for each state, and the manner of processing cases belonging to

each possible state is dictated by a small table of constant data. This technique avoids all visible

artifacts associated with floating-point round-off errors.

4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a block diagram showing an example of a typical computer system on which

an embodiment of the invention may be implemented.

[0012] FIG. 2 is an example of a shape having an outline defined by a set of closed contours

composed of quadratic Bézier curves.

[0013] FIG. 3 is a flowchart illustrating an example of the major steps of the total winding

number computation for a particular pixel location.

[0014] FIG. 4 is a flowchart illustrating an example of the major steps of the modification to

the winding number performed for each Bézier curve.

[0015] FIGS. 5A–5H are graphs illustrating example member curves of the eight equivalence

classes into which all quadratic Bézier curves are classified with respect to a ray.

[0016] It is to be noted that the appended drawings illustrate only typical embodiments of this

invention and are therefore not to be considered limiting of its scope, for the invention may

admit to other equally effective embodiments.

DETAILED DESCRIPTION OF THE INVENTION

[0017] The present invention renders shapes having outlines that are defined by a set of

quadratic Bézier curves forming one or more closed contours. Such shapes may correspond to

glyphs belonging to a font, but the invention applies more generally to shapes similarly defined

for other purposes. Referring to FIG. 1, a typical embodiment runs on a computer system having

a CPU 100 and a memory 102 where program instructions 103 implementing the method of the

present invention are stored. The computer system may include a GPU 101, and the program

instructions may be executed on either the CPU or the GPU, if present. The highly parallel nature

of the method, specifically that program instructions may be executed independently for each

member of an array of pixels covering a shape, makes GPU execution the preferred embodiment.

The computer system may also include one or more display devices 105, one or more input

devices 106, storage media 107, or additional components not shown. For each execution of the

program instructions, the inputs consist of a pixel location and the control point data 104

corresponding to the set of quadratic Bézier curves defining the outline of the shape being

5

rendered. In a basic embodiment of the invention, the output is a Boolean value indicating

whether the pixel location lies within the interior of the shape or not. In a more sophisticated

embodiment, the output is a fractional numerical value approximating the portion of the pixel

that is covered by the interior of the shape.

[0018] FIG. 2 illustrates one example of a shape corresponding to the capital letter “P” in the

Arial font. The shape is defined by a set of closed contours that are each composed of a

continuous piecewise sequence of quadratic Bézier curves. In this example, the shape is defined

by two contours 200 and 201, and they are wound in opposite directions. Each Bézier curve

comprises two on-curve control points shown as filled circles, such as points 202 and 203, and

one off-curve control point shown as an open circle, such as point 204, between the two on-curve

control points. A particular pixel location is considered to be in the interior 205 of the shape

outline if the total winding number, equal to the sum of the winding numbers specific to each of

the shape’s contours, is nonzero. The winding number specific to each contour is an integer that

reflects the number of complete loops the contour makes around a point. A positive number is

assigned to one winding direction, clockwise or counterclockwise, and a negative number is

assigned to the opposite winding direction.

[0019] The total winding number for a particular pixel location is typically calculated through

the process shown in FIG. 3, which illustrates one possible implementation of the present

invention. The total winding number is initialized to zero at block 300. Between blocks 301 and

309, the implementation considers each of the quadratic Bézier curves composing the complete

shape. The control points of a particular Bézier curve are translated in block 302 such that the

pixel location coincides with the origin of the coordinate system. In block 303, a ray is

constructed beginning at this origin and extending to infinity in an arbitrary direction. The goal is

to accurately discover all of the intersections the ray makes with the set of Bézier curves defining

the shape. In a particular embodiment, it is convenient to choose ray directions that are parallel to

the coordinate axes, and the description below uses a ray parallel to the x axis as an example. It

should be noted that the same description applies to rays aligned to other directions and that the

mathematical formulae are equally valid after an appropriate coordinate rotation. When a contour

crosses the ray from left to right, one is added to the total winding number, and when a contour

crosses the ray from right to left, one is subtracted from the total winding number. The choice as

6

to whether one is added or subtracted for a particular crossing direction may be reversed as long

as the choice is applied consistently. If, after considering the complete set of contours, the total

winding number is nonzero, then the pixel location lies within the interior of the shape’s outline.

Otherwise, in the case that the total winding number is zero, the pixel location lies in the exterior.

[0020] A single component of a contour is defined by the parametric function

 () () ()
2 2

1 2 31 2 1t t t t t= − + − +C p p p , (1)

which constitutes a quadratic Bézier curve having the 2D control points 1p , 2p , and 3p . The

parameter t varies over the range  0,1 . For a ray pointing in the direction of the positive x axis in

a coordinate system in which the location of the pixel being rendered has been translated to the

origin, the values of t at which () 0yC t = are determined by finding the roots of the polynomial

 () ()2
1 2 3 1 2 12 2y y y t y y t y− + − − + , (2)

where (),i i ix y=p . The parametric roots 1t and 2t are then given by

2 2

1 2 and
b b ac b b ac

t t
a a

− − + −
= = , (3)

where 1 2 32a y y y= − + , 1 2b y y= − , and 1c y= . In the case that a is near zero, we instead compute

2c b and assign it to both roots 1t and 2t . As shown in FIG. 3, the values of 1t and 2t are calculated

in block 306, and the points ()1tC and ()2tC are calculated in block 307. From a purely

mathematical perspective, any values of it in the range )0,1 such that () 0x iC t  correspond to a

valid intersection between the ray and the Bézier curve. However, this calculation is prone to

numerical precision errors whenever 1y or 3y is very small in absolute value. The problem is that

the finite number of bits in a floating-point value are incapable of producing the exactness

needed in calculating 1t and 2t where either could be close to zero or one. The result is that a ray

passing too close to the point where two Bézier curves are connected may unintentionally cause

two intersections to be counted or both curves to be missed altogether, leading to the appearance

of rendering artifacts. The errors are especially problematic in cases where the Bézier curve is

tangent to the ray at its first or last control point.

7

[0021] The present invention achieves unconditional numerical robustness over the entire space

of finite inputs by ignoring the values of it insomuch as whether they satisfy )0,1it  and instead

calculating winding numbers based solely on a binary classification of the values 1y , 2y , and 3y ,

specifically whether each is negative or not negative. This classification is preferred over the

equally valid classification based on whether the values are positive or not positive because it is

convenient in practice to extract sign bits from the standard IEEE 754 floating-point

representations of the values. In FIG. 3, the classification is performed in block 304.

Embodiments in which the y coordinates are assigned a trinary classification derived from

whether their values are positive, negative, or zero are also possible, but some of the resulting

states would be redundant. For a binary classification, every quadratic Bézier curve has a three-

bit state that reduces the problem domain to exactly eight distinct equivalence classes. A table

lookup or logic calculation in block 305 converts the three-bit state into a two-bit code indicating

whether each root is eligible to make a contribution to the winding number. For all of the cases

belonging to each equivalence class, modifications to the winding number arising from

contributions of the two roots at 1t and 2t are processed in exactly the same manner in block 308,

having the implementation shown in FIG. 4.

[0022] The derivative of equation (2) is given by 2 2at b− , and substituting 1t for t always

results in a negative number or zero. Referring to FIG. 4, whenever the root at 1t is determined

eligible in block 400 and the condition ()1 0xC t  is satisfied in block 401, the winding number

is incremented by one in block 402 because the curve must cross the ray from left to right.

Similarly, substituting 2t for t in the derivative always results in a positive number or zero, so

whenever the root at 2t is determined eligible in block 403 and the condition ()2 0xC t  is

satisfied in block 404, the winding number is decremented by one in block 405 because the curve

must cross the ray from right to left. (As mentioned above, the reverse convention, interchanging

the increment and decrement operations, is also valid as long as it is applied consistently.) The

ordering of the values ()1xC t and ()2xC t does not affect the potential contributions made by the

roots at 1t and 2t .

[0023] Table 1 below lists the eight possible three-bit states for a quadratic Bézier curve and

the associated two-bit root eligibility codes. In each of the columns Y1, Y2, and Y3, an entry

having the value 1 corresponds to the states 1 0y  , 2 0y  , and 3 0y  , respectively, and an entry

8

having the value 0 corresponds to the states 1 0y  , 2 0y  , and 3 0y  , respectively. In each of the

columns T1 and T2, an entry having the value 1 indicates that the root associated with the

parameter values 1t and 2t , respectively, is eligible to make a contribution to the winding number

when the conditions ()1 0xC t  and ()2 0xC t  are satisfied, respectively, and an entry having the

value 0 indicates that the root is not eligible to make a contribution.

Table 1

Class Y3 Y2 Y1 T2 T1

A 0 0 0 0 0

B 0 0 1 0 1

C 0 1 0 1 1

D 0 1 1 0 1

E 1 0 0 1 0

F 1 0 1 1 1

G 1 1 0 1 0

H 1 1 1 0 0

[0024] FIGS. 5A–5H illustrate example curves representative of the equivalence classes listed

in rows A–H of Table 1, respectively. The representative curves include all 27 cases in which

0iy  , 0iy = , and 0iy  to make it clear what happens in the important instances in which a ray

passes directly through a control point. The winding number may be modified whenever the

curve transitions from negative to not negative or vice-versa. A circle containing a plus symbol,

such as circle 500 in FIG. 5C, corresponds to a change of positive one occurring when the curve

transitions from not negative to negative at the root 1t . A circle containing a minus symbol, such

as circle 501 in FIG. 5C, corresponds to a change of negative one occurring when the curve

transitions from negative to not negative at the root 2t .

[0025] In the equivalence classes associated with rows A and H in Table 1, no transitions

between negative and not negative ever occur, and thus no modification is made to the winding

number. In each of the remaining six equivalence classes, the potential for a modification to the

winding number exists. The difficult case in which a contour is tangent to the ray at an endpoint

shared by two consecutive curves is handled without explicit detection or special code.

9

Equivalence class A includes all cases for which a contour is tangent to the ray at an endpoint but

is otherwise positive, ensuring that the winding number is unmodified. In the similar case that a

contour is tangent to the ray at an endpoint but is otherwise negative, two equal and opposite

modifications are always made to the winding number, and they cancel each other out exactly.

This is exemplified by the many combinations of tangent curves shown in FIGS. 5A–5H in which

a circle containing a plus symbol and a circle containing a minus symbol would coincide when

the curves are connected to each other. (Note that there is no requirement that the curves have a

continuous derivative at the endpoint where they are joined.) In equivalence classes C and F,

there is a special case in which 1y and 3y have the same state but 2y has the opposite state, and it

is possible that ()yC t has no real roots. In order to handle this condition with uniformity, any

negative values of 2b ac− are replaced by zero, which has the effect of setting 1 2t t b a= = . If one

root makes a contribution, then the other root does as well in this case because () ()1 2x xC t C t= ,

so they cancel each other out. An example of such a combination of a positive and negative

modification to the winding number is indicated by the circle 502 shown in FIG. 5F.

[0026] The values in columns T1 and T2 of Table 1 form a 16-bit lookup table that can be

expressed as the hexadecimal number 2E74, where the first two digits are a concatenation of the

bits in column T2, and the last two digits are a concatenation of the bits in column T1. For a

particular equivalence class, the values in columns Y1, Y2, and Y3 form a shift code such that

when the number 2E74 is logically shifted right by the shift code, the eligibility state for the root

at 1t appears in the least significant bit of the result, and the eligibility state for the root at 2t

appears in the ninth least significant bit of the result. The shift code is effectively an index used to

look up data from the appropriate bit positions in the table expressed as the number 2E74. For

control point coordinates 1y , 2y , and 3y corresponding to an arbitrary quadratic Bézier curve that

has been translated so that the pixel location coincides with the origin, the shift code is given by

1 2 3

1 2 3

0, if 0 0, if 0 0, if 0

1, if 0 2, if 0 4, if 0

y y y

y y y

          
+ +       

          
. (4)

After the shift code is used to logically shift right the number 2E74, if the least significant bit of

the result is set and ()1 0xC t  , then one is added to the winding number. If the ninth least

significant bit of the result is set and ()2 0xC t  , then one is subtracted from the winding number.

10

[0027] The 16-bit lookup table and shift code calculation may be replaced by an equivalent

sequence of logic operations, and doing so may achieve higher performance in an embodiment

that executes instructions on a processor featuring a ternary logic instruction. Suppose that the

values of 1y , 2y , and 3y are stored as 32-bit IEEE 754 floating-point numbers, and let 1k , 2k , and

3k be 32-bit signed integers having the same underlying bit patterns as 1y , 2y , and 3y ,

respectively. The most significant bit of the value given by ()() ()1 2 3 2 3& | | &k k k k k is equal

to the eligibility state for the root at 1t , and the most significant bit of the value given by

() ()1 2 3 2 3& | | &k k k k k is equal to the eligibility state for the root at 2t . (Here, the symbol

 means unary logical NOT, the symbol & means binary logical AND, and the symbol | means

binary logical OR.) Because the most significant bit of a signed integer determines whether the

value is negative, the results of the logic operations can be tested for a negative sign to determine

whether each root is eligible to make a contribution to the winding number.

[0028] Due to the fact that precision-sensitive range tests for the values of 1t and 2t are not

utilized, it is not possible to miscount the number of intersections that a ray makes with a

contour. The shift codes or logic operations used to determine the values in columns T1 and T2 of

Table 1 are produced by exact calculations based on the translated y coordinates of the input

control points, which are invariant along any horizontal ray. The quadratic and linear terms of

()xC t are also invariant, leaving only the constant term equal to the translated x coordinate of

the control point 1p as the quantity that changes as the ray origin is moved left or right. This

guarantees that there exists a value 0x such that for all 0x x , a particular contour intersection is

counted, and for all 0x x , the same intersection is not counted.

[0029] Instead of calculating an integral winding number that outputs only a binary inside or

outside state for each pixel location with respect to a shape’s outline, an embodiment may

accumulate fractional coverage values by considering how close each ray intersection is to the

location of the pixel being rendered. The fraction f of a pixel crossed by a ray from left to right

before an intersection occurs is given by

 ()()1
2

sat x if mC t= + , (5)

where m is the number of pixels in one unit of distance in the shape’s coordinate system, and

“sat” is the saturate function that clamps its input value to the range  0,1 . Adding and

11

subtracting these fractions from the total winding number for each eligible root has the effect of

antialiasing in the direction of the rays. The fractional coverage value can be calculated for rays

parallel to both the x and y axes and combined to produce a rendered image with antialiasing

applied in all directions. While many methods of combining the coverage values could be

employed, the simplest example is an average of two coverage values.

[0030] The set of quadratic Bézier curves considered for any particular pixel location may be

reduced in size by partitioning the area containing a shape into several bands that are aligned

parallel to the directions of the rays used for intersection testing. In a preprocessing step, a list of

curves intersecting each band is determined and stored alongside the control point data defining

the shape. The list of curves for each band excludes every curve having control points that all lie

in the same exterior side of the band because these curves correspond to equivalence classes A

and H in Table 1 for every pixel inside the band and thus cannot make a contribution to the total

winding number for such pixel locations.

[0031] It is to be understood that the above described embodiments are merely illustrative of

numerous and varied other embodiments which may constitute applications of the principles of

the invention. Such other embodiments may be readily devised by those skilled in the art without

departing from the spirit or scope of this invention, and it is our intent that they be deemed

within the scope of our invention.

12

CLAIMS

The invention claimed is:

1. A method performed by a computer system for rendering a shape defined at least in part by

one or more closed contours composed at least in part of one or more quadratic curves by

calculating an associated winding number at a plurality of fixed sample positions corresponding

to pixel locations, the method comprising:

identifying Bézier control points for each said quadratic curve;

classifying each said Bézier control point based on its position with respect to at least one

ray;

selecting at least one root of each said quadratic curve with respect to said ray, wherein

said selection is based on the result of said classification;

computing at least one root of each said quadratic curve with respect to said ray;

computing at least one intersection point on each said quadratic curve, where said

intersection point is computed at a parameter value corresponding to said root; and

choosing a color determined by the spatial relationship between said intersection point

and at least one said sample position.

2. The method of claim 1, wherein the classification of a Bézier control point is binary such that

each Bézier control point may be classified as being in one of two distinct states.

3. The method of claim 1, wherein the classification of a Bézier control point is trinary such that

each Bézier control point may be classified as being in one of three distinct states.

13

4. The method of claim 1, wherein the selection of a root is accomplished by using a table of

values indexed by the result of the classification.

5. The method of claim 1, wherein the selection of a root is accomplished by applying a plurality

of logic operations to the result of the classification.

6. The method of claim 1, further comprising a step of calculating a fractional pixel coverage

value.

7. One or more non-transitory computer-readable storage media containing program instructions

describing a method for causing a computer to render a shape defined at least in part by one or

more closed contours composed at least in part of one or more quadratic curves, comprising:

computer program code for identifying Bézier control points for each said quadratic

curve;

computer program code for classifying each said Bézier control point based on its

position with respect to at least one axis;

computer program code for selecting at least one root of each said quadratic curve with

respect to said axis, wherein said selection is based on the result of said classification;

computer program code for computing at least one root of each said quadratic curve with

respect to said axis;

computer program code for computing at least one intersection point on each said

quadratic curve, where said intersection point is computed at a parameter value

corresponding to said root; and

14

computer program code for choosing a color determined by the spatial relationship

between said intersection point and at least one said sample position.

8. The non-transitory computer-readable storage media of claim 7, wherein the program

instructions are executed by a central processing unit.

9. The non-transitory computer-readable storage media of claim 7, wherein the program

instructions are executed by a graphics processing unit.

15

ABSTRACT

A method for rendering a shape partially defined by quadratic Bézier curves computes the

winding number with respect to one or more closed contours to determine whether a sample

position is colored. Numerical robustness is achieved by classifying the controls points of each

Bézier curve in order to partition the set of all possible Bézier curves into eight equivalence

classes that can each be processed in the same manner. A small table of binary values specifies

whether the roots of a classified Bézier curve are eligible to modify the winding number at a

particular pixel location.

1/9

FIG. 1

100 101

102

105

106

107

103

104

Central
Processing
Unit (CPU)

Graphics
Processing
Unit (GPU)

Display
Device(s)

Input
Device(s)

Storage
Media

Memory

Program Instructions

Control Point Data

2/9

FIG. 2

200

201

202

205

204

203

Clockwise winding

Counterclockwise winding

3/9

FIG. 3

300

301

302

303

304

305

306

307

308

309

Begin

End

Translate quadratic
Bézier curve control points

Construct ray starting at origin

Classify translated control
points with respect to ray

Convert 3-bit classification
state into 2-bit root eligibility

Compute parametric roots
of Bézier curve with

respect to ray intersection

Compute points where ray
intersects Bézier curve

For each Bézier curve
composing shape

Initialize winding
number to zero

Next Bézier curve

Modify winding number

4/9

FIG. 4

400

401

403

404

402

405

Begin

Yes

No

No

No

No

Yes

Yes

Yes

End

Root 1 eligible?

Intersection
coordinate 1

positive?

Increment winding number

Decrement winding number

Root 2 eligible?

Intersection
coordinate 2

positive?

5/9

FIG. 5A

()0, 0
x

y

()0, 0
x

y

()0, 0
x

y

()0, 0
x

y

1p

1p

1p

1p

1p

1p

2p

2p

2p

2p 2p

2p

2p

3p

3p

3p

1p

1p

3p 3p

3p

2p 3p

3p

()0, 0
x

y

()0, 0
x

y

()0, 0
x

y

()0, 0
x

y

6/9

FIG. 5B

()0, 0
x

y

()0, 0
x

y

()0, 0
x

y

()0, 0
x

y

1p

1p 1p

1p

2p

2p

2p

2p

3p 3p

3p

3p

‒ ‒

‒ ‒

7/9

FIG. 5C

()0, 0
x

y

()0, 0
x

y

()0, 0
x

y

()0, 0
x

y

1p

1p

1p

1p

2p

2p 2p

2p

3p

3p 3p

3p

+ ‒ + ‒

+ ‒ + ‒

500 501

8/9

FIG. 5E

FIG. 5D

()0, 0
x

y

()0, 0
x

y

‒ ‒

1p 2p 1p 2p

3p

3p

()0, 0
x

y

()0, 0
x

y

()0, 0
x

y

()0, 0
x

y

+ +

+ +

1p

1p

1p

1p

2p2p

2p
2p

3p

3p

3p

3p

9/9

FIG. 5G

FIG. 5F

FIG. 5H

1p

2p

3p

()0, 0
x

y

±

‒ +

1p
1p

2p

2p

3p
3p

()0, 0
x

y

()0, 0
x

y

+ +

1p

1p

2p 2p3p 3p

()0, 0
x

y

()0, 0
x

y

502

	Drawings.pdf
	Computer
	Outline
	Flowchart1
	Flowchart2
	CurvesA
	CurvesB
	CurvesC
	CurvesDE
	CurvesFGH

